DOCUMENT D’ACCOMPAGNEMENT 1
PRÉSENTATION SYNTHÉTIQUE RELATIVE À LA
GESTION DE L’EAU
DOCUMENT 1 : PRÉSENTATION SYNTHÉTIQUE RELATIVE À LA GESTION DE L’EAU
DOCUMENT 1 : PRÉSENTATION SYNTHÉTIQUE RELATIVE À LA GESTION DE L’EAU 2

1. LE BASSIN ADOUR-GARONNE EN BREF ... 6

2. UN BASSIN SOUMIS À DES ÉVOLUTIONS D’ICI 2027 .. 7
 2.1. Des usages économiques qui évoluent ... 7
 2.1.1. Agriculture .. 8
 2.1.2. Pêche et Aquaculture ... 9
 2.1.3. Industrie .. 9
 2.1.3.1. Panorama général de l’industrie ... 9
 2.1.4. Tourisme et activités récréatives ... 12
 2.2. Une évolution démographique importante ... 13
 2.2.1. Évolutions démographiques récentes .. 13
 2.2.2. Les tendances démographiques à l’horizon 2027 ... 14
 2.3. Les effets attendus du changement climatique ... 15
 2.3.1. Vulnérabilité du bassin et politique d’adaptation ... 15
 2.3.2. Les projections à 2050 ... 17

3. BILAN DU SDAGE 2016-2021 ... 20
 3.1. Un dispositif de suivi adapté de la mise en œuvre des actions pour l’atteinte des objectifs 21
 3.2. Suivi thématique du SDAGE et du PDM .. 23
 3.2.1. Mieux connaître pour mieux gérer l’eau et les milieux aquatiques 23
 3.2.2. Mettre en place une gouvernance adaptée ... 25
 3.2.3. Réduire les pollutions ponctuelles ... 29
 3.2.4. Réduire les pollutions diffuses .. 30
 3.2.5. Gérer la ressource en eau .. 32
 3.2.6. Restaurer les fonctionnalités des milieux aquatiques .. 35
 3.3. Évolution de l’état des masses d’eau et analyse de l’atteinte des objectifs fixés pour le deuxièm
 ème cycle .. 38
 3.3.1. État des masses d’eau superficielles ... 38
 3.3.1.1. Amélioration de l’état des masses d’eau ... 38
 3.3.1.2. Évolution de certains élémets de qualité biologique et physico-chimique 39
 3.3.1.3. Points à souligner concernant cette évaluation de l’état des masses d’eau superfi
 cielles .. 40
 3.3.1.4. Analyse de l’atteinte des objectifs du SDAGE 2016-2021 40
 3.3.2. État des masses d’eau souterraine .. 40
 3.3.2.1. État chimique .. 40
 3.3.2.2. État quantitatif .. 41
 3.3.2.3. Analyse de l’atteinte des objectifs du SDAGE 2016-2021 41
4. RÉSUMÉ DE L’ÉTAT DES LIEUX ... 41
 4.1. Un état des eaux en progression .. 42
 4.2. Les pressions s’exerçant sur les masses d’eau ... 44
 4.2.1. Une pression domestique qui se réduit mais des équipements à maintenir en bon fonctionnement ... 45
 4.2.2. Une pression industrielle ciblée .. 45
 4.2.3. Une pression liée aux nitrates et aux pesticides toujours forte .. 46
 4.2.4. Des perturbations hydromorphologiques toujours présentes ... 47
 4.2.5. Une pression de prélèvement toujours présente ... 48
 5. EVALUATION DU RISQUE DE NON ATTEINTE DES OBJECTIFS ENVIRONNEMENTAUX 49
 5.1. Le risque de non atteinte du bon état des eaux superficielles et souterraines 49
 5.1.1. Eaux superficielles ... 49
 5.1.2. Eaux souterraines ... 52
 5.1.2.1. Risque chimique ... 52
 5.1.2.2. Risque quantitatif .. 54
 5.1.2.3. Risque global 2027 .. 56
 5.2. Le risque de non atteinte des autres objectifs de la Directive-Cadre ... 62
 6. INVENTAIRE DES SUBSTANCES DANGEREUSES ... 64
 6.1. Approche méthodologique globale de réalisation de l’inventaire ... 65
 6.2. Inventaire des rejets, pertes et émissions des substances : résultats globaux 66
 6.3. Émissions liées à l’agriculture .. 68
 6.4. Ruissellement depuis les surfaces imperméabilisées .. 68
 6.5. Émissions de stations de traitement des eaux usées collectives .. 69
 6.6. Émissions industrielles ... 70
 7. VERSION ABRÉGÉE DU REGISTRE DES ZONES PROTÉGÉES ... 72
 7.1. Registre santé ... 72
 7.1.1. Masses d’eau utilisées pour le captage d’eau destinées à la consommation humaine 72
 7.1.1.1. Réglementation ... 72
 7.1.1.2. Caractérisation et localisation des zones ... 72
 7.1.2. Masses d’eau utilisées dans le futur pour le captage d’eau destiné à la consommation humaine .. 73
 7.1.3. Masses d’eau désignées zones de baignade et d’activités de loisirs et de sports nautiques 75
 7.1.3.1. Réglementation ... 75
 7.1.3.2. Normes et zones de protection ... 75
 7.1.3.3. Caractérisation et localisation des zones ... 76
7.2. Zones vulnérables figurant à l’inventaire prévu par le décret du 27 Août 1993 relatif à la protection des eaux contre la pollution par les nitrates d’origine agricole 76
 7.2.1. Réglementation .. 76
 7.2.2. Sur le bassin Adour-Garonne ... 77
 7.2.3. Caractérisation et localisation des zones ... 77
7.3. Zones sensibles aux pollutions... 77
 7.3.1. Réglementation .. 77
 7.3.2. Sur le bassin Adour-Garonne ... 78
 7.3.3. Caractérisation et localisation des zones ... 78
7.4. Registre des zones de protection des habitats et des espèces liées aux sites Natura 2000.. 78
 7.4.1. Réglementation .. 78
 7.4.2. Caractérisation et localisation des zones ... 79
7.5. Zones de production conchylicole ainsi que, dans les eaux intérieures, les zones où s’exercent des activités de pêches d’espèces naturelles autochtones, importantes du point de vue économique .. 80
 7.5.1. Les zones conchylicoles .. 80
 7.5.1.1. Normes et zones de protection .. 80
 7.5.2. Caractérisation et localisation des zones ... 81
L'article 12 de l'arrêté du 17 mars 2006, modifié par arrêté du 2 avril 2020 relatif au contenu des SDAGE, prévoit que le présent document d'accompagnement du SDAGE 2022-2027 doit présenter :

Un bilan du SDAGE 2016-2021 avec une évaluation des progrès accomplis dans l'atteinte des objectifs du SDAGE et une présentation synthétique des mesures prévues dans le PDM 2016-2021 qui n'ont pas été mis en œuvre;

Le résumé de l'état des lieux 2019 du bassin, préalable à la mise à jour du SDAGE et PDM 2022-2027, présentant l'état des masses d'eau et les principales pressions anthropiques et leurs impacts ainsi que les masses d'eau sur lesquelles engager des actions pour atteindre ou maintenir le bon état des eaux.

L'inventaire des substances dangereuses mis à jour dans le cadre de l'état des lieux 2019 ;

La version abrégée du registre des zones protégées mis à jour dans le cadre de l'état des lieux 2019 ;

La carte des schémas d'aménagement et de gestion des eaux (SAGE) adoptés ou en cours d'élaboration qui est intégrée dans le bilan du SDAGE 2016-2021.

1. LE BASSIN ADOUR-GARONNE EN BREF

Le bassin Adour-Garonne couvre 20% du territoire national (117 650 km²) et deux régions Nouvelle-Aquitaine et Occitanie ainsi qu’une faible partie de la région Auvergne-Rhône-Alpes. Au total, cela représente 26 départements en tout ou partie et 6677 communes dont 43 de plus de 20 000 habitants (population légale 2019).

Il comprend 116 817 km de cours d’eau, de très nombreux lacs naturels ou artificiels et 630 km de littoral répartis sur les bassins versants de l’Adour, de la Garonne, de la Dordogne, de la Charente ainsi que sur les cours d’eau côtiers charentais et aquitains. Il est parcouru par le canal des deux mers (canal du Midi et canal de la Garonne). Il compte aussi de nombreuses zones de montagne (Pyrénées, Montagne noire, Massif Central) sur plus de 30% de son territoire (4,1 millions d’hectares de forêt).

L’essentiel du bassin présente un caractère rural prononcé et une densité de population faible. La majorité des 8 millions d’habitants (population légale 2019) se trouve concentrée sur l’axe Garonne entre les deux métropoles toulousaine et bordelaise qui regroupent 20% de la population du bassin. Il bénéficie d’un environnement diversifié et d’une grande variété de sites naturels remarquables, notamment les zones humides en têtes de bassin versant* et en zone littorale qui attirent de nombreux touristes et estivants.

Le bassin a une vocation agricole affirmée à la base d’une industrie agroalimentaire diversifiée (103 000 exploitations agricoles en 2016, 5,3 millions d’hectares en cultures, soit 20% de la SAU nationale, 214 700 emplois dans l’agriculture).

Le tissu industriel traditionnel (chimie lourde, industrie du cuir, du textile et du papier, métallurgie…) en déclin par endroits, mais voisine avec des industries de pointe comme l’électronique et l’aéronautique.

L’énergie hydroélectrique produite sur le bassin représente en moyenne 14 TWh/an, soit 20% de la production nationale. C’est une ressource énergétique renouvelable qui contribue à la lutte contre l’effet de serre et présente un intérêt majeur par sa capacité de modulation, sa rapidité de mobilisation et pour la sécurité du système électrique.
Les richesses piscicoles font l'objet d'une valorisation par la pêche professionnelle en zone maritime (17 600 tonnes de poissons et crustacés en 2016) et en eau douce ainsi que par les nombreux pêcheurs de loisir. Le littoral atlantique et surtout les bassins de Marennes-Oléron et d'Arcachon assurent la production de coquillages (58 000 tonnes commercialisées dans la région Nouvelle-Aquitaine en 2017). La production aquacole d’eau douce concerne principalement la truite (95% des tonnages produits à l’échelle nationale) et le saumon.

Le bassin Adour-Garonne est le seul bassin européen à encore accueillir l’ensemble des 8 grandes espèces de poissons migrateurs amphihalins*.

La façade maritime du bassin compte trois grands ports de commerce : Bayonne, Bordeaux, Rochefort-Tonnay-Boutonne.

2. **UN BASSIN SOUMIS À DES ÉVOLUTIONS D’ICI 2027**

2.1. Des usages économiques qui évoluent

La caractérisation des usages liés à l’eau sur le bassin Adour-Garonne a pour objectifs :

- d’estimer le poids économique des différents usages de l’eau. Afin de favoriser la comparaison entre ces usages, cette estimation s’est appuyée à chaque fois que cela était possible sur les indicateurs valeur ajoutée, chiffre d’affaires et nombre d’emplois ;
- de mieux situer les différents enjeux économiques liés aux usages de l’eau.

Cette analyse économique a été menée pour les activités qui dépendent de la disponibilité et de la qualité de l’eau. Ainsi, le secteur tertiaire n’a pas été analysé. Les données présentées proviennent de l’exploitation de statistiques nationales (INSEE, recensement agricole) et de données des secteurs professionnels. La carte ci-dessous présente en synthèse les principales activités par grands territoire du bassin.

Figure 1: Carte des principales activités économiques du bassin
2.1.1. Agriculture

Le territoire présente une agriculture diversifiée, avec une spécialisation selon des zones bien distinctes :

- les grandes cultures et les systèmes de polyculture et d’élevage dans les zones de plaine et le piémont pyrénéen ;
- l’élevage des bovins ou des ovins dans les zones de montagne des Pyrénées et les contreforts du massif Central ;
- la viticulture dans la Gironde et les Charentes.

L’agriculture est à l’origine d’importantes émissions de pollution en particulier par les pesticides et les nitrates qui touchent au moins 36% des masses d’eau de surface et 40% des masses d’eau souterraine.

Tableau 1: Quantification socio-économique de l’agriculture sur le bassin Adour-Garonne

<table>
<thead>
<tr>
<th>Secteur</th>
<th>Caractérisation de l’agriculture</th>
<th>Poids économique en 2016</th>
<th>Liens à l’eau</th>
<th>Comparaison aux années précédentes / État des lieux</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Évolution</td>
</tr>
<tr>
<td>Exploitations agricoles</td>
<td>103 000 exploitations agricoles en 2016</td>
<td>Emploi : 214 700 personnes (UTA)</td>
<td>-</td>
<td>Nombre d'exploitations : -8% ; Emplois : -7,8% de 2010 à 2016</td>
</tr>
<tr>
<td>Production végétale</td>
<td>5,3 millions d’ha de SAU (20% de la SAU nationale)</td>
<td>Valeur de production : 8,4 Mds€/an</td>
<td>-</td>
<td>Valeur de la production : +20 % de 2010 à 2016</td>
</tr>
<tr>
<td>Irrigation</td>
<td>530 000 ha en 2010</td>
<td>-</td>
<td>986 Mm³ d’eau prélevés en 2016</td>
<td>Prélèvements relativement stables sauf en 2014 (-65% par rapport à 2016)</td>
</tr>
<tr>
<td>Engrais et phytosanitaires</td>
<td>14 000 tonnes de phytosanitaires vendus en 2016</td>
<td>993 M€ dépensés pour les engrais et amendements</td>
<td>Impacts potentiels</td>
<td>Tonnage de phytosanitaires : -2% de 2012 à 2016</td>
</tr>
<tr>
<td>Production animale</td>
<td>Entre 8 et 43% du cheptel national selon les espèces (Porcins 1 millions de têtes et ovins 3,1 millions de têtes en 2016)</td>
<td>Valeur de production : 4 Mds€/an</td>
<td>Utilisation de l’eau pour les animaux</td>
<td>Volumes potentiels des rejets</td>
</tr>
<tr>
<td>Agriculture biologique (AB)</td>
<td>7 900 exploitations et près de 250 000 ha de surfaces certifiés AB</td>
<td>-</td>
<td>Pratique respectueuse de la ressource en eau</td>
<td>Surfaces : +48% de 2011 à 2016</td>
</tr>
</tbody>
</table>
2.1.2. Pêche et Aquaculture

Ces activités peuvent générer des pressions sur l’eau et les milieux aquatiques en lien avec l’extraction d’espèces ciblées ou non, l’abrasion et le remaniement des fonds sédimentaires, la production de déchets directement liés à l’élevage et à la pêche ou la transformation des poissons sur les bateaux ou dans les entreprises.

Tableau 2: Quantification socio-économique de la pêche et de l’aquaculture sur le bassin Adour-Garonne

<table>
<thead>
<tr>
<th>Secteur</th>
<th>Estimation sur la base des données collectées sur le bassin Adour-Garonne</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Caractérisation de l’activité</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Pêche professionnelle maritime</td>
<td>540 navires de pêche, 2 550 marins pêcheurs, 17 600 tonnes de poissons et crustacés dans le bassin AG</td>
</tr>
<tr>
<td>Pêche professionnelle en eau douce</td>
<td>109 pêcheurs professionnels en 2017 (25 % de l’effectif national)</td>
</tr>
<tr>
<td>Conchyliculture</td>
<td>1091 entreprises conchylicoles en 2012, 58 000 tonnes commercialisées en Nouvelle-Aquitaine en 2017</td>
</tr>
<tr>
<td>Aquaculture continentale</td>
<td>196 établissements, Production salmonicole (truite et saumon) : 11 000 tonnes en 2011</td>
</tr>
</tbody>
</table>

2.1.3. Industrie

2.1.3.1. Panorama général de l’industrie

Le bassin Adour-Garonne est faiblement industrialisé. Toutefois 52 000 établissements recensés dans les régions Occitanie et Nouvelle-Aquitaine emploient 442 000 salariés et dégagent une valeur ajoutée de 29,6 milliards d’euros par an. Après avoir été en forte baisse pendant plusieurs années, les emplois industriels se stabilisent dans la région Nouvelle-Aquitaine et sont même en légère hausse en Occitanie (+0,7% entre 2015 et 2017), notamment grâce au secteur de l’aéronautique et de l’agro-alimentaire.

L’industrie sur le bassin Adour-Garonne est répartie en 5 grands secteurs dont les principales caractéristiques sont présentées dans la figure ci-dessous.
L’industrie en Adour-Garonne a prélevé 5,5 milliards de m³ pour l’année 2016 dont 99 % pour le secteur « industries extractives, Énergie, eau, gestion des déchets et dépollution », chiffre à mettre directement en lien avec les 2 centrales nucléaires qui prélèvent à elles seules 5,3 milliards de m³.
En ce qui concerne les rejets, les secteurs de la fabrication d’autres produits industriels et de la fabrication de denrées alimentaires, de boissons et de produits à base de tabac se démarquent puisqu’en 2016, ils concentraient à eux deux 54% des établissements redevables et généraient les 3/4 du montant des redevances industrielles.

Tableau 3 : Quantification socio-économique de l’industrie sur le bassin Adour-Garonne

<table>
<thead>
<tr>
<th>Secteur</th>
<th>Estimation sur la base des données collectées sur le bassin Adour-Garonne</th>
<th>Comparaison aux années précédentes / État des lieux</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Caractérisation de l’activité</td>
<td>Poids économique en 2016</td>
</tr>
<tr>
<td>Global</td>
<td>52 000 établissements (Occitanie et Nouvelle-Aquitaine)</td>
<td>442 000 salariés valeur ajoutée de 29,6 milliards d’euros par an.</td>
</tr>
<tr>
<td>Hydroélectricité</td>
<td>Puissance installée 8 GW Production moyenne de 14 TW/an (20 % de la production nationale)</td>
<td>2 000 emplois 440 M€ de chiffre d’affaires</td>
</tr>
<tr>
<td>Extraction des granulats</td>
<td>362 établissements Production de 44 Mt en 2016</td>
<td>1 800 emplois 550 M€ de chiffre d’affaires</td>
</tr>
<tr>
<td>Activités portuaires et navigation commerciale</td>
<td>Trafic en 2016 : 7,84 Mt à Bordeaux ; 2,33 Mt à Bayonne et 0,652 Mt à Rochefort-Tonnay-Charente</td>
<td>2 200 emplois directs des activités portuaires en Nouvelle-Aquitaine</td>
</tr>
<tr>
<td>Eaux embouteillées</td>
<td>16 usines d’embouteillage</td>
<td>470 emplois 240 M€ de chiffre d’affaires</td>
</tr>
</tbody>
</table>
Tourisme et activités récréatives

Tableau 4 : Quantification socio-économique des activités récréatives sur le bassin Adour-Garonne

<table>
<thead>
<tr>
<th>Secteur</th>
<th>Caractérisation de l’activité</th>
<th>Poids économique en 2016</th>
<th>Liens à l’eau</th>
<th>Comparaison aux années précédentes / État des lieux</th>
<th>Évolution</th>
<th>Tendance générale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tourisme</td>
<td>1 million de lits marchands et 2,8 millions de lits dans les résidences secondaires</td>
<td>184 000 emplois touristiques</td>
<td>Consommation d’eau potable et rejets d’eaux usées (pointe)</td>
<td>Capacités et nutiées touristiques en hausse</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nuitées annuelles > 200 millions</td>
<td>53 M€ de taxe de séjour en Nouvelle-Aquitaine et Occitanie en 2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermalisme</td>
<td>58 établissements</td>
<td>38 000 emplois directs et indirects</td>
<td>Chiffre d’affaires de 500 M€ sur le bassin en 2016</td>
<td>Chiffre d’affaires en hausse</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10,5 millions de journées de cures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>219 000 curistes en 2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baignade maritime</td>
<td>166 sites suivis par l’ARS en 2017 (95 % d’excellente qualité)</td>
<td>Forte contribution à l’attractivité touristique des territoires</td>
<td>Sensibilité à la qualité bactériologique. Impact potentiel en cas de surfréquentation</td>
<td></td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Baignade en eau douce</td>
<td>314 sites de baignade en eau douce par l’ARS (74% d’excellente qualité)</td>
<td></td>
<td></td>
<td></td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Plaisance</td>
<td>70 ports de plaisance maritimes en Nouvelle-Aquitaine</td>
<td>Impacts de la navigation de plaisance en Gironde : 30 M€/an en 2016</td>
<td>Enjeux de pollution de l’eau</td>
<td>Haussé du nombre de bateaux</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td></td>
<td>352 bateaux promenades en Nouvelle-Aquitaine et Occitanie en 2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pêche amateur en mer</td>
<td>Entre 95 000 et 220 000 pêcheurs de loisir</td>
<td>Dépenses d’équipement : 146 €/pêcheur/an</td>
<td>Impact potentiel sur les stocks de poissons</td>
<td>Haussé du nombre de pêcheurs</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>Pêche amateur en eau douce</td>
<td>182 000 pêcheurs amateurs dont 926 pêcheurs de saumon en 2016</td>
<td>Retombées économiques : 246 M€ en 2016</td>
<td></td>
<td>Haussé du nombre de licenciés</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>Surf</td>
<td>8 000 licenciés en 2015</td>
<td>Filtre glisse en Aquitaine : 3 500 emplois et 1,7 Milliard€/an de chiffre d’affaires</td>
<td>Risque de conflits d’usage (baignade)</td>
<td>Haussé du nombre de licenciés</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 000 pratiquants occasionnels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neige de culture</td>
<td>21 stations de ski</td>
<td>10 000 emplois dans les stations</td>
<td>1,05 millions de m³ d’eau prélevés pour la neige de culture</td>
<td>Stabilité du chiffre d’affaires entre 2009 et 2017</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td></td>
<td>315 canons à neige</td>
<td>82 M€/an de chiffre d’affaires moyen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 millions de journées</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.2. Une évolution démographique importante

2.2.1. Évolutions démographiques récentes

Le bassin Adour-Garonne couvre une superficie de 117 650 km² environ sur lesquels on recense 6 750 communes regroupant 7,8 millions d’habitants et 1.2 millions d’habitants saisonniers (en 2018).

Entre 1999 et 2018, la population a augmenté de près de 1 million d’habitants (+14 % en 15 ans), soit à un rythme nettement plus soutenu que sur l’ensemble de la population métropolitaine (+11 % sur la même période). Cette évolution n’est pas uniforme. Entre 2006 et 2016, les départements à forte population, la Haute-Garonne et la Gironde, connaissent les plus grandes augmentations avec respectivement 12 % et 10 %. Les départements de l’Ariège, de Lot-et-Garonne ou encore la Dordogne connaissent une relative stabilité. Le département du Cantal se caractérise par la plus forte baisse (-6%).

En rythme annuel, la population augmente de 0,71% par an. Cette croissance de la population est essentiellement liée au solde migratoire (0,65 % par an), le solde naturel (total naissance – total mortalité) étant très faible (0,06% par an). 3 spécificités sont à relever :

- une population vieillissante : avec un solde naturel très faible, la population du bassin vieillit plus vite que l’ensemble de la population métropolitaine ; 28 % de la population a ainsi plus de 60 ans, contre 24,4% au niveau national. Cette structure de la population pèse également sur le taux d’activité du bassin (nombre d’actifs / nombre d’habitants) qui est en nette baisse depuis 1999 : 46,3 % contre 52,2% et en retrait par rapport au niveau national (47,1%) ;
- une population rurale : avec une densité de population de 67 habitants au km², le bassin, est loin derrière la moyenne nationale (118 habitants au km²). La dynamique démographique est essentiellement soutenue par les 2 principales communautés urbaines Toulouse et Bordeaux. En dehors de ces 2 centres urbains, on recense seulement 3 agglomérations de plus de 100 000 habitants : Bayonne-Angleter-Biarritz, Angoulême et Pau. La ruralité du bassin est également soulignée par :
 - le poids des communes de petites tailles : sur les 6750 communes du bassin, 90 % ont moins de 2 000 habitants et les 100 plus grandes communes du bassin absorbent plus du 1/3 de la population du bassin ;
 - le poids des emplois agricoles dans le bassin qui est de près du double qu’au niveau national : 3,2 % des emplois du bassin, contre 1,7% au niveau national.
- une population saisonnière importante : en plus des 7,6 millions d’habitants (en 2016), on recense une très forte population saisonnière en raison du fort attrait touristique du bassin. Cet afflux de population saisonnière est particulièrement marqué sur le littoral et les Pyrénées et dans une moindre mesure sur la frange ouest du massif central.

Ces évolutions démographiques ne sont pas neutres en termes d’habitudes de consommation d’eau, de capacité contributive, de dimensionnement et de nature des équipements que ce soit pour ce qui relève de l’alimentation en eau potable ou pour l’assainissement des eaux usées.
2.2.2. Les tendances démographiques à l’horizon 2027

Pour la période 2022-2027, des projections démographiques ont été traitées à l’échelle de 49 bassins de vie du district à travers le référentiel Omphale. Pour l’INSEE, le bassin de vie constitue le plus petit territoire sur lequel les habitants ont accès aux équipements et services les plus courants. On définit tout d’abord un pôle de services, comme une commune ou unité urbaine. Sa zone d’influence est ensuite délimitée en regroupant les communes les plus proches, la proximité se mesurant en temps de trajet par la route à heure creuse.

Les évolutions de la population observées sur la période récente vont se poursuivre. Les bassins de vie caractérisés par des hausses significatives de la population d’ici 2027 sont la grande banlieue toulousaine (+5,8%) ainsi qu’une grande partie de la frange litorale : Littoral Gironde - Landes nord ; Littoral Landes sud et Garonne en amont de Bordeaux (+4%). Ces évolutions témoignent de l’attraction des métropoles du sud-ouest, des phénomènes de périurbanisation autour de ces métropoles, et de l’attractivité de la frange litorale du bassin. À l’inverse, les bassins d’Aurillac – Cère, Cahors, Tarbes et Brive devraient voir leur population baisser de façon modérée (-1%).
2.3. Les effets attendus du changement climatique

2.3.1. Vulnérabilité du bassin et politique d’adaptation

La prise en compte des effets du changement climatique avait été intégrée dans le SDAGE 2016-2021 à travers différentes dispositions. Pour aller plus loin, le Comité de Bassin a initié en mai 2016 l’élaboration d’un Plan d’Adaptation du Bassin au Changement Climatique (PACC), adopté le 2 juillet 2018.

Les travaux menés confirment que le bassin Adour-Garonne présente une forte vulnérabilité face aux effets du changement climatique sur l’ensemble des compartiments étudiés.

CHANGEMENT CLIMATIQUE EN 2050

- + 2 °C (T° de l’air)
- - 20 à - 40 % du débit des rivières
- Diminution de la hauteur et durée de l’enneigement sous 1500 m d’altitude

• étiages plus précoces, sévères et longs;
• réchauffement des eaux, moins de dilutions: aggravation du risque de pollution;
• augmentation des phénomènes extrêmes: sécheresses et inondations;
• tendance à la baisse de la recharge des nappes souterraines;
• vulnérabilité des zones humides;
• élévation du niveau de la mer: risque de submersion marine et d'érosion côtière.
La vulnérabilité « disponibilité en eau superficielle » à l’échelle des sous-bassins

La vulnérabilité « disponibilité en eau souterraine » à l’échelle des masses d’eau souterraine

La vulnérabilité « biodiversité en cours d’eau »

La vulnérabilité « biodiversité des zones humides »

La vulnérabilité « eutrophisation des cours d’eau »

Figure 5 : Secteurs à vulnérabilité du bassin nécessitant des mesures d’adaptation

Pour le bassin, les modèles et la connaissance scientifique s’accordent aujourd’hui sur les évolutions suivantes à horizon 2050 :

- une augmentation de la température moyenne annuelle de l’air d’au minimum + 2°C ;
- une augmentation de l’évapotranspiration comprise entre +10 % et +30 % ;
- une baisse moyenne annuelle des débits naturels des rivières comprise entre -20 % et -40 % et de l’ordre de -50 % en période d’étiage qui seront plus précoces, plus sévères et plus longues ;
- une tendance à la baisse de la recharge des nappes phréatiques, très variable selon les secteurs et le type de nappes, allant de +20 % à -50 % ;
- une augmentation également significative de la température des eaux de surface (déjà réelle aujourd’hui : +1,5°C constaté en 40 ans) ;
• une augmentation de la sécheresse des sols ;
• une augmentation des situations extrêmes (sécheresses, crues et inondations) ;
• une élévation du niveau de la mer, de l’ordre de 21 cm (et de façon très probable comprise entre 60 cm et 1 m en 2100).

Ces évolutions accentueront les difficultés en termes de gestion de l’eau, qui caractérisent d’ores et déjà le bassin notamment sur le plan quantitatif. Elles auront des répercussions importantes sur l’état des ressources en eau mais également sur l’ensemble des activités économiques et des usages qui dépendent de cette ressource, comme le montre le dernier rapport du comité scientifique régional Acclima Terra « Anticiper les changements climatiques en Nouvelle-Aquitaine ».

2.3.2. Les projections à 2050

Les données issues du modèle régional ALADIN-Climat mises à disposition sur le portail DRIAS les futurs du climat, permettent de projeter à une échelle plus fine les changements climatiques globaux attendus au cours des prochaines décennies. Les résultats de cette projection climatique mettent en avant deux éléments importants sur le bassin Adour-Garonne concernant la température & les précipitations.

Concernant la température, les projections climatiques montrent une poursuite du réchauffement annuel jusqu’aux années 2050, quel que soit le scénario. La température moyenne annuelle évolue différemment selon les saisons. Le scénario RCP 4.5 (scénario considéré comme médian) prévoit une augmentation moyenne de la température annuelle d’environ 1,2°C et qui sera plus marqué au printemps, en été et à l’automne. Cette hausse de la température peut être raccrochée à une augmentation de l’évapotranspiration (ETP) et donc à d’éventuelles fluctuations futures des débits notamment en période d’étiage, période déjà actuellement sensible.

![Figure 6 : Anomalie de la température moyenne saisonnière-Scénario médian (RCP 45) - horizon proche (2021-2050) par rapport à la période référence 1950-2005](image)
Figure 7 : Anomalie de la température moyenne en hiver - Scénario médian (RCP 45) - horizon proche (2021-2050) par rapport à la période référence 1950-2005 (DRIAS les futurs du climat)

Figure 8 : Anomalie de la température moyenne au printemps - Scénario médian (RCP 45) - horizon proche (2021-2050) par rapport à la période référence 1950-2005 (DRIAS les futurs du climat)
Figure 9 : Anomalie de la température moyenne en été - Scénario médian (RCP 45) - horizon proche (2021-2050) par rapport à la période référence 1950-2005 (DRIAS des futurs du climat)

Figure 10 : Anomalie de la température moyenne en automne - Scénario médian (RCP 45) - horizon proche (2021-2050) par rapport à la période référence 1950-2005 (DRIAS des futurs du climat)
Concernant les précipitations, les projections climatiques montrent peu d’évolution des précipitations annuelles et saisonnières d’ici 2050 quel que soit le scénario considéré. Pour autant l’évolution des précipitations est plus incertaine. Ce paramètre étant marqué par une importante variabilité spatiale sur l’ensemble du bassin.

![Figure 11: Anomalie du cumul de précipitation - Scénario médian (RCP 45) - horizon proche (2021-2050) par rapport à la période référence 1950-2005 (DRIAS les futurs du climat)](image)

3. **BILAN DU SDAGE 2016-2021**

Depuis 2010, le bassin Adour-Garonne dispose d’une planification des politiques de l’eau : le SDAGE et le programme de mesures (PDM) pour le premier cycle 2010-2015 et le SDAGE et PDM pour le deuxième cycle 2016-2021. Ce dernier plan de gestion arrivant à échéance, il s’agit aujourd’hui de le mettre à jour en prenant en considération les nouvelles connaissances acquises lors de ce deuxième cycle.

En effet, en mettant en place le SDAGE et le PDM 2016-2021, le bassin Adour-Garonne :

- s’est doté de tableaux de bord permettant le suivi des mesures et de leurs incidences sur la qualité des milieux ;
- a mis en place un programme de surveillance améliorant ainsi la connaissance des milieux ;
- et, surtout, a acquis une expérience qui lui permet aujourd’hui de mieux mesurer les capacités d’actions.

Le deuxième cycle de gestion n’étant pas terminé, dresser un bilan complet est impossible, mais l’identification des freins, des faiblesses améliorera l’efficacité, rendra plus opérationnel le SDAGE-PDM 2022-2027 et visera le maintien d’objectifs environnementaux les plus ambitieux possibles.
3.1. Un dispositif de suivi adapté de la mise en œuvre des actions pour l’atteinte des objectifs

Le suivi de la mise en œuvre du SDAGE, du PDM et du PACC à l’échelle du bassin et des territoires permet de rendre compte des progrès accomplis en matière de réduction des pressions et d’atteinte des objectifs sur les masses d’eau, des efforts restant à réaliser mais également à identifier les actions déjà mises en œuvre et celles qu’il serait nécessaire de prioriser ou réorienter pour atteindre les objectifs fixés.

Le comité de bassin a souhaité être informé du suivi de la mise en œuvre du SDAGE et du PDM 2016-2021 mais également du suivi du PACC pour renforcer sa capacité à adapter la politique de l’eau à l’échelle du bassin pour atteindre les objectifs du SDAGE.

Le dispositif de suivi ainsi défini permet au comité de bassin de rendre compte de la mise en œuvre en fonction d’indicateurs de suivi et d’objectifs ciblés, piloter l’avancement du SDAGE, du PDM et du PACC, anticiper pour une meilleure adaptation au contexte et partager avec une communication adaptée vers les instances et les acteurs de l’eau du bassin.

À l’échelle du bassin, le dispositif de suivi de la mise en œuvre du SDAGE et du PDM s’appuie sur cinq outils principaux :

- le programme de surveillance qui permet le suivi de l’état des eaux superficielles et souterraines du bassin grâce à des stations de mesure et d’évaluer l’incidence des actions sur la qualité des milieux,
- le suivi des « suites à donner » du SDAGE qui concernent certaines dispositions qui requièrent la mise en œuvre d’actions à engager au niveau du bassin,
- le suivi de la mise en œuvre des réglementations et des stratégies de bassin sur lesquelles le SDAGE 2016-2021 a fait reposer l’atteinte de ses objectifs (volumes prélevables*, continuité écologique, directive nitrates, Ecophyto, cadre de plan d’action pour un retour à l’équilibre quantitatif,...),
À l'échelle des territoires, un suivi opérationnel de la mise en œuvre du SDAGE et du PDM existe au travers de trois outils complémentaires :

- la définition et le suivi de la mise en œuvre des stratégies territoriales à l'échelle des 8 commissions territoriales du bassin Adour-Garonne. Elles visent à renforcer le déploiement de la politique de l'eau déclinée localement dans les territoires :
 - en favorisant la synergie des moyens techniques, réglementaires et financiers de l’agence, de l’État et des acteurs locaux,
 - en améliorant la priorisation et le pilotage stratégique, ainsi que le portage politique des objectifs chiffrés assignés à chaque territoire,
 - en s'adaptant aux enjeux des territoires,
 - en cohérence avec les orientations nationales, du bassin Adour-Garonne et régionales, tout en préservant la subsidiarité des territoires sur la mise en œuvre,
 - en favorisant une approche transversale partagée et portée par les acteurs locaux.

Les Préfets Coordonnateurs de Sous Bassin copilotent avec l’Agence de l’eau la mise en œuvre de la stratégie territoriale, qui fixe les priorités de coordination à porter à l’échelle d’un sous-bassin, en lien avec la commission territoriale et avec l’appui du secrétariat technique local (STL).

À l’échelle de la commission territoriale, les partenaires Agence, État, OFB et a minima l’EPTB (ou structure assimilée), partagent et s’engagent sur des objectifs à atteindre, et sur les moyens à mettre en œuvre pour les atteindre.

- le suivi des SAGE et des contrats de milieux (rivières et nappes) représente également une photographie sur leurs périmètres de l’avancement des actions concourant à l’atteinte des objectifs du SDAGE. Une synergie entre les PAOT et les actions portées par les SAGE ou les contrats de milieu est recherchée dans le SDAGE 2016-2021 ;

- l’avancement des actions des plans d’actions opérationnels territorialisés (PAOT) :
 - un bilan de l’avancement du PAOT fait l’objet d’une présentation au moins une fois par an en MISEN stratégique au niveau départemental et permet de fixer des priorités et d’identifier les difficultés dans la réalisation des actions pour adapter, éventuellement, l’organisation et les leviers d’actions de la MISEN ;
Ces dispositifs relèvent d’échelles différentes, mais convergent et se complètent. Ils ont permis au bassin Adour-Garonne d’acquérir une expérience qui va lui permettre aujourd’hui de piloter de façon précise et de mesurer l’efficacité des politiques et des actions. De plus, une meilleure couverture et structuration de la gouvernance (compétence GEMAPI, articulation avec les bassins versants de gestion), permettra une mise en œuvre plus efficiente des actions.

3.2. Suivi thématique du SDAGE et du PDM

À partir des données disponibles pour le suivi de la mise en œuvre du SDAGE-PDM 2016-2021 (tableau de bord SDAGE-PDM et PACC, bilan intermédiaire du PDM de 2018, suivi de la mise en œuvre des réglementations sur lesquelles le SDAGE a fait reposer l’atteinte des objectifs), des fiches thématiques ont été établies sur des enjeux prioritaires du SDAGE 2016-2021 :

- gouvernance – Mieux connaître pour mieux gérer l’eau et les milieux aquatiques,
- gouvernance – Mettre en place une gouvernance adaptée,
- pollution – Réduire les pollutions ponctuelles,
- pollution – Réduire les pollutions diffuses,
- quantité - Gérer la ressource en eau,
- restaurer les fonctionnalités du milieu.

Thématique par thématique, l’état d’avancement global des actions prévues dans les plans d’actions opérationnels territorialisés (PAOT) du bassin Adour-Garonne en janvier 2020 est décliné dans l’histogramme ci-dessous : 43% des actions sont au stade engagé et 27% des actions sont terminées.

3.2.1. Mieux connaître pour mieux gérer l’eau et les milieux aquatiques

Mieux gérer les ressources en eau et les milieux aquatiques suppose de mieux comprendre les phénomènes et de partager les connaissances, mais également, face aux enjeux posés par le changement climatique, de tout mettre en œuvre pour définir des stratégies d’actions plus efficaces et mieux ciblées sur les pressions et leurs impacts. Le SDAGE et le PDM 2016-2021 recommandent…

<table>
<thead>
<tr>
<th>Logique de mise en œuvre des mesures</th>
<th>Les mesures de connaissance ont été limitées dans le PDM 2016-2021 du fait d’un certain nombre d’actions déjà engagées au 1er cycle 2010-2015. Elles visent en particulier les territoires présentant un déficit de connaissance sur plusieurs domaines afin de définir ou de mieux cibler les actions à mettre en œuvre.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principales avancées</td>
<td>--</td>
</tr>
<tr>
<td>• La surveillance de la qualité des milieux aquatiques s’est accrue avec :</td>
<td>• La mise à disposition et la valorisation des données pour la mise à jour du SDAGE et PDM 2016-2021 au service de la meilleure connaissance de la qualité des milieux sur le système d’information sur l’eau (SIE)* du bassin Adour-Garonne (http://adour-garonne.eaufrance.fr/) : état des milieux aquatiques, couches informatives sur les aires d’alimentation de captages (AAC), volumes prélevés, pollutions rejetées, référentiel des masses d’eau, zonages réglementaires... ;</td>
</tr>
<tr>
<td>– le développement des suivis biologiques (3000 relevés biologiques annuels soit 100 fois qu’il y a 50 ans) ;</td>
<td></td>
</tr>
<tr>
<td>– la croissance forte du nombre de mesures (1,7 million d’analyses de qualité de l’eau par an contre 25 000 en 1971) ;</td>
<td></td>
</tr>
<tr>
<td>– l’augmentation des stations de qualité des eaux souterraines sur les masses d’eau du type « molasses », suite à une étude conduite en 2016-2017, a permis d’améliorer la connaissance de cette typologie complexe ainsi que la représentativité des stations de qualité ;</td>
<td></td>
</tr>
<tr>
<td>– la mise en place en 2016 du nouveau programme de surveillance DCE 2016-2021 adapté aux pressions recensées dans l’état des lieux 2013 suite à l’arrêté de surveillance du préfet coordonnateur de bassin de décembre 2015 ;</td>
<td></td>
</tr>
<tr>
<td>– la publication en 2018 d’un bilan de la qualité des rivières du bassin Adour-Garonne depuis 50 ans pour rendre compte des progrès accomplis et des défis à relever avec une mise en perspective sur le temps long (document téléchargeable sur https://www.calameo.com/read/000222592c7d85a1ecbb2) ;</td>
<td></td>
</tr>
<tr>
<td>− le rapprochement du réseau de surveillance de la directive Nitrates avec le réseau DCE ;</td>
<td></td>
</tr>
<tr>
<td>− la mise en place en 2018 du programme de surveillance de la directive cadre stratégie pour le milieu marin (DCSMM), en lien avec le réseau de surveillance DCE ;</td>
<td></td>
</tr>
<tr>
<td>− la mise en place de 50 millions de données fin 2020 au service de la meilleure connaissance de la qualité des milieux sur le système d’information sur l’eau (SIE)* du bassin Adour-Garonne (http://adour-garonne.eaufrance.fr/) : état des milieux aquatiques, couches informatives sur les aires d’alimentation de captages (AAC), volumes prélevés, pollutions rejetées, référentiel des masses d’eau, zonages réglementaires... ;</td>
<td></td>
</tr>
<tr>
<td>− L’accès à 50 millions de données fin 2020 au service de la meilleure connaissance de la qualité des milieux sur le système d’information sur l’eau (SIE)* du bassin Adour-Garonne (http://adour-garonne.eaufrance.fr/) : état des milieux aquatiques, couches informatives sur les aires d’alimentation de captages (AAC), volumes prélevés, pollutions rejetées, référentiel des masses d’eau, zonages réglementaires... ;</td>
<td></td>
</tr>
<tr>
<td>Principales difficultés rencontrées</td>
<td>L’élaboration et la mise en œuvre du SDAGE et PDM 2016-2021 met encore en évidence quelques déficits de connaissance sur l’évaluation de l’état des eaux et des pressions de pollution notamment sur les eaux littorales et que certaines données restent encore inexploitées et/ou leur interprétation peut poser certaines difficultés.</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>

3.2.2. **Mettre en place une gouvernance adaptée**

Le SDAGE et le PDM 2016-2021 visent à renforcer et pérenniser l’organisation des acteurs afin de mieux gérer l’eau aux bonnes échelles et au niveau local, coordonner les moyens et les intervenants, notamment en lien avec la mise en œuvre de la nouvelle compétence sur la gestion des milieux aquatiques et la prévention des inondations (GEMAPI). Le SDAGE préconise également de connaître et faire connaître les problématiques de l’eau sur le bassin. Le SDAGE complète aussi les territoires sur lesquels une gouvernance doit être prioritairement mise en place sous forme de :

- 16 schémas d’aménagement et de gestion des eaux (SAGE) nécessaires à élaborer d’ici 2017 ou 2021,
- 3 démarches de gestion concertée sur les nappes captives,
- 2 établissements publics territoriaux de bassin (EPTB) sur les territoires « Tarn-Aveyron » et « Garonne-Ariège-Rivières de Gascogne ».

Le SDAGE et le PDM recommandent également une meilleure prise en compte des enjeux de l’eau dans les documents d’urbanisme afin de privilégier un aménagement durable du territoire. Ils prévoient aussi une meilleure utilisation des analyses économiques pour aider à la décision en recherchant le meilleur rapport coût/efficacité et, en s’assurant, par la concertation, de l’acceptabilité sociale des actions locales.

Principales avancées

- Concernant les démarches de gestion concertée :
 - 27 SAGE couvrent 71% du bassin fin 2020 ;
 - 14 des 16 SAGE identifiés comme nécessaires sont en émergence, élaboration ou mis en œuvre ; tous les SAGE nécessaires à échéance 2017 sont en cours d’élaboration ou mis en œuvre. Seuls les SAGE Nives et Gaves (étude de faisabilité en cours de démarrage) ne se sont pas engagés ;
 - Réalisation d’un bilan qualitatif des SAGE du bassin en 2016 avec formulation de pistes d’amélioration : tableau de bord type de suivi des SAGE ou audit des règles des règlements de SAGE mis en œuvre ;
 - 27 démarches territoriales (contrats territoriaux et contrats de rivières) sont à différents stades d’avancement ;
 - Suivi des SAGE et contrats de rivières par leurs instances (disposition A23 du SDAGE 2016-2021) et engagement du travail sur un cadre commun de tableau de bord ;
 - Réalisation d’un état des lieux de l’approche inter-SAGE sur le bassin en 2019 : existence de cette approche sous diverses formes sans mise en place systématique d’une commission de coordination inter-SAGE (disposition A4 du SDAGE 2016-2021) et proposition de valoriser les bons exemples de fonctionnement ;
 - Les démarches de gestion concertée demandées sur les 3 nappes souterraines ciblées par le SDAGE bénéficient de quelques avancées, même si elles ne sont pas formalisées : une disposition du SAGE Charente prévoit la protection de la nappe infra-toarcien, une animation portée par l’EPTB Adour va être mise en place sur la nappe des sables infra-molassiques et une étude est en projet sur la nappe du Périgord-agenais ;
- La structuration des deux EPTB visés par le SDAGE connait quelques avancées :
 - Sur le territoire Tarn-Aveyron, tous les partenaires s’accordent sur la nécessité d’une gouvernance à cette échelle. La coopération entre les syndicats mixtes du
bassin s'intensifie dans l'objectif de créer une association interdépartementale. L'objectif d'un EPTB à terme a été inscrit dans la stratégie territoriale Tarn-Aveyron;

- **Sur le territoire Garonne-Ariège-Rivières de Gascogne**, les 2 régions Occitanie et Nouvelle-Aquitaine, les 7 départements concernés, les 2 métropoles de Toulouse et Bordeaux, l’Etat et l’Agence de l’eau ont acté fin 2020 la création d’une association pour la gestion quantitative de la ressource en eau des bassins Garonne, Ariège, Neste-Rivières de Gascogne et Estuaire, en complémentarité avec les acteurs existants (SMIDDEST pour l’estuaire notamment);

- Sur la structuration des acteurs :

 - **Une importante réforme des collectivités locales** a été menée à l’échelle nationale depuis 2014 afin de rationaliser le nombre et l’organisation des structures intercommunales dont les structures en charge d'eau potable, d'assainissement et de gestion des milieux aquatiques. À terme, le nombre réduit de maîtres d'ouvrages et une meilleure structuration aideront à l’atteinte des objectifs de la DCE;

 - **La stratégie d'organisation des compétences locales de l'eau (SOCLE) du bassin Adour-Garonne** [http://www.occitanie.developpement-durable.gouv.fr/la-strategie-d-organisation-des-competences-a23915.html], adoptée par le préfet coordonnateur de bassin le 21 décembre 2017, comprend un état des lieux de la répartition des compétences entre les collectivités et leurs groupements en matière de petit cycle (eau potable et assainissement) et de grand cycle de l’eau (GEMAPI) ainsi que des recommandations pour l’exercice de ces compétences ;

 - **Plusieurs études de gouvernance et d’appui juridique** ont été initiées à l’échelle des bassins versants notamment des réflexions sur les statuts et l’organisation statutaire des compétences à l’échelle d’EPTB existants (Lot, Charente, Adour) ou pressentis (Tarn-Aveyron) et à l’échelle d'autres territoires (Viaur, Montagne Noire…);

 - **En matière de GEMAPI** :

 - aboutissement de nombreuses études de gouvernance conduisant à la définition d’un schéma de gouvernance, en lien avec l’ensemble des acteurs concernés (cf. carte 49 de l’atlas cartographique de la SOCLE, téléchargeable sur [http://www.occitanie.developpement-durable.gouv.fr/la-strategie-d-organisation-des-competences-a23915.html]);

 - accompagnement auprès des élus dans leurs démarches et réflexions sur la prise de compétence GEMAPI (guide pratique [voir https://eau-grandsudouest.fr/politique-eau/france/gestion-milieux-aquatiques-prevention-inondations-gemapi], 2 journées formation, e-lettre);

 - mise en place de la mission d'appui technique pour produire les doctrines de bassin et les retours d'expériences en matière de GEMAPI ;

 - émergence de 4 établissements publics d'aménagement et de gestion des eaux (EPAGE) : syndicat mixte du bassin versant du Viaur, syndicat mixte du bassin de la Boutonne, syndicat mixte du bassin de l'Agout et syndicat mixte du bassin de l'Antenne. Deux autres projets sont en cours sur les bassins du Cérou-Vère et du Tarn aval ; **Plusieurs études de mutualisation des services d’eau et d’assainissement entre collectivités** ont été réalisées pour faire le point sur les structures exerçant les compétences et les schémas directeurs existants afin d'anticiper les réorganisations induites par la loi NOTRe (département du Tarn, communauté de communes de la vallée du Baretous dans le sous-bassin de l'Adour, Châteaignerai cantalienne dans le sous-bassin de la Dordogne...);

- **Sur le domaine de l'eau et l’urbanisme** :

- **Création en 2018 de l’Entente pour l’eau** rassemblant l’État, les régions Occitanie et Nouvelle-Aquitaine et le comité de bassin Adour-Garonne afin de coordonner la lutte contre les effets du changement climatique sur le bassin Adour-Garonne. Son **plan d’actions** a été validé en **2019** avec en particulier **4 appels à projets** : préservation des zones humides, économies d’eau, désimperméabilisation et réutilisation des eaux usées traitées (https://www.eau-grandsudouest.fr/politique-eau/bassin/entente-pour-eau);

- **Renforcement en 2019 du rôle des préfets coordonnateurs de sous bassin** par la lettre de mission du préfet coordonnateur du bassin Adour-Garonne : coordination des actions de gestion de l’eau des différents préfets des départements du sous bassin, planification des actions à mener sur le sous bassin pour l’atteinte du bon état des eaux et de la bonne qualité des milieux aquatiques ainsi que pour une gestion quantitative équilibrée des ressources au regard de tous les usages ;

- **Elaboration et mise en œuvre de stratégies territoriales à l’échelle des 8 commissions territoriales** du bassin Adour-Garonne en 2020 et 2021 dans le but de renforcer le déploiement de la politique de l’eau déclinée localement dans les territoires en donnant de la visibilité aux priorités et d’en assurer le pilotage stratégique à l’échelle des commissions territoriales.

<table>
<thead>
<tr>
<th>Principales difficultés rencontrées</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Difficultés liées au contexte économique :</td>
</tr>
<tr>
<td>- Dans un contexte de crise économique globale entraînant un fort ralentissement de l’économie nationale et locale, les ressources des acteurs économiques se trouvent réduites. La baisse globale de l’activité réduit les chiffres d’affaires des acteurs privés, et les rentrées fiscales pour les acteurs publics et entraîne une difficulté accrue d’accès au crédit pour l’ensemble des acteurs. Les ressources pour la mise en œuvre des programmes de mesures s’en trouvent contraintes.</td>
</tr>
<tr>
<td>- Les investissements à réaliser par les collectivités sont difficiles, en particulier pour les travaux de restauration hydromorphologique pour lesquels elles ne peuvent s’appuyer sur des redevances directes et doivent contribuer à minima à hauteur de 20% du montant. Dans une moindre mesure, les investissements sont également difficiles pour les travaux relatifs aux services d’eau et d’assainissement pour lesquels des ressources directes de redevances pour services rendus sont disponibles via les factures d’eau. Les acteurs privés demandent également des délais de mise en œuvre moins contraints. L’État, enfin, n’a pas la capacité de venir en substitution ou en compensation de l’ensemble de ces acteurs du fait des limites de ses propres ressources. Le budget de l’État est en diminution depuis 2017 et les missions sont recentrées sur les activités essentielles pour la mise en œuvre des plans de gestion et des programmes de mesures.</td>
</tr>
<tr>
<td>- Difficultés liées à la gouvernance :</td>
</tr>
<tr>
<td>- Depuis 2015, les réformes des collectivités locales pour rationaliser le nombre et l’organisation des structures intercommunales ont ralenti la mise en œuvre des programmes de mesures avec parfois des acteurs réticents à s’engager dans l’immédiat, en particulier sur des actions à long terme dans le contexte changeant décrit ;</td>
</tr>
<tr>
<td>- Un certain nombre de mesures de gouvernance (gestion des captages, gestion quantitative de la ressource, mise en place SAGE), basées sur des processus de concertation, nécessitent un délai important de définition puis de mise en œuvre du programme d’actions et enfin de perception des résultats sur les pressions et les milieux. Ces dispositifs partagés se révèlent être performants une fois mis en place mais nécessitent de surmonter les tensions et obstacles locaux.</td>
</tr>
</tbody>
</table>
3.2.3. Réduire les pollutions ponctuelles

Sur les pollutions ponctuelles, le SDAGE et le PDM 2016-2021 demandent notamment de renforcer les capacités de traitement, mais aussi de réduire les émissions de polluants à la source, au regard des objectifs de bon état et afin de protéger les usages particulièrement vulnérables (en priorité l’eau potable). Dans un but de gestion intégrée des rejets polluants à l'échelle des bassins versants, il est aussi préconisé de travailler sur la notion de flux admissibles* pour les milieux aquatiques. Ils préconisent aussi l’amélioration de la gestion préventive et curative des ruissellements pollués par temps de pluie, qui impactent les milieux aquatiques mais limitent aussi l’efficacité des traitements des stations d’épuration.

| Logique de mise en œuvre des mesures | Les mesures de réduction des pollutions liées à l’assainissement ont été ciblées sur les masses d’eau concernées par des mises aux normes au titre de la directive eaux résiduaires urbaines (ERU), les masses d’eau situées en zone sensible pour lesquelles les mesures de la directive ERU participent à l’atteinte de l’objectif des zones sensibles et les masses d’eau pour lesquelles la nécessité d’investissements ou d’équipements allant au-delà de la directive ERU a été identifiée pour l’atteinte du bon état des eaux.

Sur les mesures de réduction des pollutions industrielles, la priorité a été donnée au traitement des points noirs industriels. Les données du registre de recherche et réduction des rejets de substances dangereuses dans l’eau (RSDE) ont également été exploitées pour cibler les masses d’eau réceptacles de rejets à l’origine du flux. |
|---|---|
| Principales avancées | • En matière de réduction des pollutions domestiques :
 − **La diminution des concentrations en ammonium et en matières organiques**, qui caractérisent les pollutions ponctuelles, s’est révélée *bénéfique pour les organismes aquatiques* avec une amélioration des indicateurs biologiques sur les vingt dernières années. Le nombre de déclassements dus aux paramètres phosphate, **demande biologique en oxygène (DBO)*** et ammonium s’est considérablement réduit ces dernières années.

 − Un effort conséquent a été réalisé pour répondre à la directive ERU dont les travaux de mise en conformité liés au contentieux communautaire sont en voie d’achèvement. Le parc épuratoire a été modernisé et amélioré pour ce qui concerne le traitement de l’azote réduit, élément limitant pour le développement de la vie piscicole. On peut noter que :
 - plus de 93% des systèmes d’assainissement collectif de plus de 2000 EH sont conformes à la directive ERU fin 2019 ;
 - le travail d’identification des systèmes d’assainissement exerçant une forte pression domestique sur les masses d’eau superficielles et susceptible de compromettre l’atteinte du bon état a été achevé fin 2019 ;

• **Concernant la réduction des pollutions industrielles** :
 − Les flux de polluants rejetés par les industriels du bassin en 2019 continuent à baisser ;
 − Les travaux accompagnés par l’agence de l’eau permettent d’envisager une diminution de 371 kg des émissions de substances dangereuses dans les rejets des entreprises en 2020 suite à la mise aux normes de 8 entreprises vis-à-vis des rejets en micropolluants ;
 − Une stratégie d'action a été élaborée pour inciter les entreprises à entreprendre un programme d'action notamment par la mise en place des meilleures technologies disponibles pour réduire à la source les flux importants de substances dangereuses.

• **Sur la protection des eaux littorales**, la démarche pour la réalisation de profils de vulnérabilités conchylicoles en Charente-Maritime a connu une avancée significative en 2019 en coordination avec les différents partenaires (Conseil...
3.2.4. Réduire les pollutions diffuses

Sur la réduction des pollutions diffuses, le SDAGE et le PDM 2016-2021 s'appuient sur les plans nationaux qui contribuent à cet objectif (développement de l'agriculture biologique*, Écophyto,...). Mais ils incitent aussi à densifier les efforts par la mise en place de plans d’actions concertés, en premier lieu sur les ressources en eau potable alimentant les captages les plus menacés et notamment les 88 captages dits prioritaires.

Les mesures ont été mises en place prioritairement sur les masses d'eau concernées par les captages d'eau potable prioritaires identifiés dans le SDAGE 2016-2021, les masses d'eau situées en zone vulnérable notamment dans les zones d'actions renforcées, les masses d'eau concernées par une problématique d'érosion et les masses d'eau pour lesquelles une tendance à la hausse significative et durable en nitrates a été identifiée dans le SDAGE.

La réduction des pollutions diffuses s'appuie sur les plans ou programmes nationaux et régionaux (agriculture biologique, Écophyto, mise en œuvre de la directive nitrates...).

Principales avancées

- Parmi les 93 captages prioritaires du SDAGE 2016-2021, on note fin 2020 que :
 - 100% des captages disposent d'une aire d'alimentation de captage ;
 - 61 captages font l'objet d'une démarche de plan d'action territorial (PAT) de reconquête de la qualité de l'eau brute engagée ;
 - 5 captages sont officiellement abandonnés et d'autres sont en cours d'abandon. Ces captages ne feront pas l'objet d'un programme d'actions ;

Exemple d'action : le programme Re-Sources pour la protection des captages de la région Nouvelle Aquitaine : Le programme a pour objectif de reconquérir et préserver durablement la qualité de l'eau destinée à l'alimentation en eau potable des habitants de Nouvelle-Aquitaine. L’enjeu est de sécuriser la production d’eau potable. Il induit des changements de pratiques et des évolutions de systèmes de production dans le but de prévenir la pollution des eaux captées. Les bassins d'alimentation de captage ayant une forte vocation agricole, la majorité des actions est orienté vers une agriculture durable.

https://www.re-sources-nouvelle-aquitaine.fr/

- La réduction de la pollution des eaux par les nitrates intervient au titre de la directive nitrates notamment par la mise aux normes des effluents d’élevage des exploitations situées en zones vulnérables :
 - En réponse à une demande forte de la commission européenne dans le cadre de procédures contentieuses, la France a engagé une réforme depuis 2012 instituant un programme d’actions national renforcé et précisé par des programmes d’actions régionaux approuvés en 2014 puis revus en 2018 pour tenir compte des récentes évolutions du programme national et de la nécessité d’harmoniser les mesures au sein des nouvelles régions. Cette réforme nationale a été menée en parallèle de la révision des zones vulnérables, au vu...
- Les programmes d’actions régionaux nitrates et les documents de communication associés ont été établis (disposition B15 du SDAGE 2016-2021) ;
- Malgré le démarrage tardif des opérations des programmes de développement ruraux régionaux (PDRR), l’engagement vers les mesures agri-environnementales reste important et la conversion à l’agriculture biologique s’est fortement développée ;

• Face à l’enjeu des phytosanitaires :
- Le ministre en charge de l’agriculture a lancé un plan national visant à réduire l’usage des produits phytopharmaceutiques. Ce plan a été révisé en 2015 pour devenir « plan Écophyto II » puis en 2018 pour devenir « plan Écophyto II+ » avec le maintien de l’objectif de réduction de 50% d’ici 2025 et de sortie du glyphosate d’ici 2022 pour l’ensemble des usages. Il est mis en œuvre par des actions nationales et complété par des feuilles de routes régionales. Des opérations du plan Écophyto II ont été menées pour la diffusion de nouvelles pratiques afin de réduire les quantités de phytosanitaires utilisées. La structuration autour d’Écophyto progresse d’année en année notamment au travers de différents réseaux : fin 2019, plus de 11 000 exploitations sur le bassin avec des surfaces en agriculture biologique, réseau 30 000 avec plus de 1500 exploitations sur le bassin, groupements d’intérêt économique et environnemental (GIEE) regroupant plus de 2600 exploitations sur le bassin,... ;
- les surfaces des exploitations en bio et en démarche de transition écologique sur les deux régions principales augmentent avec des ratios supérieurs à la moyenne nationale ; des appels à projets de filière « bas niveau d’intrants » ont été lancés en 2021.
- Les efforts engagés ne se traduisent pas par une diminution significative des ventes de produits phytosanitaires et des indices de fréquence de traitement.
- Des actions ont été mises en place par les collectivités en faveur de la réduction des pollutions phytosanitaires en zone non agricole pour diminuer les risques de pollution par les produits phytosanitaires : diagnostic et plans de désherbage, investissements avec un objectif de « zéro phyto », loi 2014-110 interdisant l’utilisation des produits phytosanitaires par les collectivités depuis janvier 2017 et les particuliers depuis janvier 2019 ;

• D’autres plans d’actions nationaux visent à faire évoluer les pratiques agricoles, regroupés sous le « projet agro-écologique » (loi d’avenir pour l’agriculture, plan Ambition Bio 2022, plan Énergie Méthanisation Autonomie Azote, plan « protéines végétales », etc.). Des démarches innovantes sur l’agroécologie ont été mises en œuvre et permettent d’illustrer les dispositions B9-B10 du SDAGE 2016-2021 : le réseau Agr’eau pour le développement de pratiques liées à l’agroécologie par l’échange d’expérience, l’observatoire de l’agro-écologie* OSAE avec des exploitations pilotes dans les pratiques limitant les transferts de polluants et la mise à disposition de données, la plateforme d’agroécologie d’Auzeville avec des groupes d’agriculteurs pour travailler sur les changements de systèmes et un raisonnement agronomique renouvelé et le programme BAG’AGÈS ;

- L’expérimentation des paiements pour services environnementaux (PSE) a été lancée en 2019 sur le bassin Adour-Garonne afin de valoriser les pratiques existantes d’une agriculture de qualité qui protège l’eau, les sols, les milieux et la biodiversité sur nos territoires. En 2020, les PSE ont valorisé 856 exploitations, représentant 72 000 ha de SAU et permettant le maintien de 9 200 km de haies et de 40 000 ha de prairies. 48% des exploitations PSE ont au moins 4 cultures et prairies temporaires dont 28% ont plus de 6 cultures (jusqu’à 14 cultures).

<table>
<thead>
<tr>
<th>Principales difficultés rencontrées</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le contexte et la nature des aides pour la mise en œuvre des mesures de maîtrise des pollutions diffuses par l’agriculture sont insuffisamment incitatifs et pérennes pour engager la profession agricole dans un changement de pratiques. Malgré ces efforts, l’échelle de temps sur laquelle peuvent se réaliser des changements de pratiques et leurs effets sur les milieux aquatiques font que globalement, sur le bassin Adour-Garonne, on observe que les rivières et les eaux souterraines restent soumises à une pression diffuse importante, qu’elle soit due aux nutriments ou aux phytosanitaires. L’inertie des milieux et les difficultés à observer rapidement les effets des mesures n’incitent pas à la mobilisation des acteurs. Les masses d’eau sur lesquelles une tendance à la hausse a été identifiée n’ont pas pu faire l’objet d’actions spécifiques puisque les études engagées ont porté sur d’autres priorités.</td>
</tr>
</tbody>
</table>

3.2.5. **Gérer la ressource en eau**

Pour parvenir à l’objectif de restaurer ou préserver l’équilibre entre la ressource en eau disponible et les besoins des usages et des milieux aquatiques, prioritairement dans les 58 bassins versants déjà identifiés en déséquilibre quantitatif, le SDAGE et le PDM 2016-2021 préconisent la mise en œuvre de démarches locales concertées, qui identifient les meilleurs moyens d’atteindre l’objectif. D’une manière générale, le SDAGE précise que la résorption des déficits passe par la mobilisation des réserves existantes, les économies d’eau ou la recherche des meilleurs moyens pour limiter les besoins en prélèvement dans la ressource (amélioration des bassins versants, amélioration des pratiques agricoles et de la gestion des sols par exemple) et la création de nouvelles réserves en eau. Le suivi et l’évaluation de tous ces moyens à l’échelle du bassin sont aussi renforcés. Leur articulation est préconisée dans la mise en œuvre de « projets de territoires pour la gestion de l’eau » définis par une instruction interministérielle de 2015 complétée par une instruction du gouvernement de 2019.

<table>
<thead>
<tr>
<th>Logique de mise en œuvre des mesures</th>
</tr>
</thead>
</table>
Principales avancées

- Dans la continuité du PACC et dans le cadre de l’Entente pour l’eau, une démarche prospective sur la ressource en eau a été adoptée par le comité de bassin fin 2019. Elle a permis d’établir une analyse entre les besoins et les ressources potentielles à l’horizon 2050 mais également d’identifier et quantifier les moyens d’actions à l’échelle des grands sous-bassins. Cette connaissance permet d’initier des trajectoires différenciées en matière de gestion quantitative notamment, en fonction de scénarios à développer dans les différents territoires du bassin ;

 - la mise en place de 15 OUGC, qui couvrent la totalité de la Zone de Répartition des Eaux (soit environ 2/3 du bassin), et gèrent les prélèvements à l’échelle de périmètres hydrologiquement cohérents ;
 - un apport de ces structures en termes de connaissance des prélèvements (conformément au code de l’environnement les OUGC réalisent un bilan annuel transmis à l'administration), de conseil auprès des irrigants et de gestion de la ressource en eau ;
 - une baisse globale des autorisations de prélèvement accordées sur ces périmètres. Cette baisse des autorisations s’inscrit dans la poursuite des efforts mis en œuvre depuis plusieurs années et dans le cadre d’une diminution des surfaces irriguées de plus de 20% les 20 dernières années (principalement de la culture du maïs), avec une baisse réelle des prélèvements, malgré des fluctuations interannuelles (demande climatique) assez importantes.

- Au-delà de la réforme des volumes prélevables, d’autres moyens d’actions sont déployés :
 - d’un point de vue réglementaire, les préfets coordonnateurs par sous-bassins et les préfets de département qui organisent les limitations d’usages en période d’étiage et la gestion durable avec la profession agricole et les autres usagers de l’eau ;
 - en termes d’accompagnement technique et financier, le développement de filières agricoles économies en eau et en intrants : l’agriculture biologique, de l’agro-écologie, d’opérations d’économies d’eau (pour tous usages)…

- À la demande des ministres de l’environnement et de l’agriculture le 30 novembre 2015, le préfet coordonnateur du bassin Adour-Garonne a établi un cadre de plan d’action pour un retour à l’équilibre quantitatif sur le bassin Adour-Garonne validé par le comité de bassin le 24 février 2017 (http://www.occitanie.developpement-durable.gouv.fr/cadre-de-plan-d-action-pour-un-retour-a-l-a24656.html). Le plan...
stratégique 2021-2027 pour la gestion quantitative équilibrée de la ressource en eau, adopté par le comité de bassin le 15 septembre 2021, complète et actualise le cadre de plan d'action pour l'atteinte de l'équilibre quantitatif de 2017, selon ses 5 axes interdépendants :

− une mise en place dynamisée de projets de territoire pour la gestion de l'eau (PTGE) qui s'applique sur une animation et un cadre méthodologique commun aux acteurs du bassin pour construire et mettre en œuvre une démarche apaisée d'atteinte de l'équilibre quantitatif sur les territoires et aboutir à la mise en œuvre concrète des actions prévues par les projets de territoire ;

− l’engagement de programmes d’économies d'eau et d'efficience des usages notamment au moyen d'appels à projets relatifs à la mise en œuvre de la transition agroécologique, à l'optimisation d'ouvrages hydrauliques existants ou à la réutilisation d'eaux non conventionnelles ;

− la sécurisation des prélèvements agricoles et une meilleure articulation du rôle des organismes uniques avec les démarches territoriales pour faciliter l'émergence et la réalisation d'actions issues de démarches de PTGE. Ceci est particulièrement important pour les bassins qui doivent faire l'objet d'un renouvellement des autorisations uniques de prélèvements pour l'irrigation ou de nouvelles autorisations en conformité avec le décret du 23 juin 2021 ;

− la réduction des périodes de gestion de crise « sécheresse » par la mise en place de toutes les mesures prévues et avec l'application de l'arrêté d'orientation de bassin qui identifie les besoins de coordination interdépartementale et d’harmonisation des mesures et vise à améliorer la lisibilité et l'opérationnalité de ces mesures pour les usagers concernés ;

− la sécurisation du soutien d'étiage et des besoins milieux/usages sur le long terme en engageant une réflexion sur les modalités d’une mobilisation accrue de volumes disponibles et sur la nécessité d’établir un nouveau modèle économique pour en assurer le financement.

La mise en œuvre de ce plan stratégique implique une déclinaison territorialisée et opérationnelle s’appuyant sur les acteurs des territoires. Le comité de bassin a mandaté les EPTB pour en assurer la coordination à l’échelle des grands sous bassins, en concertation avec les représentants économiques, les associations et les collectivités, notamment au sein des commissions locales de l’eau.

Le projet de territoire pour la gestion de l'eau (PTGE) constitue l’outil privilégié pour mener la réflexion dans les sous-bassins où le déséquilibre est important qui correspondent principalement aux sous-bassins où des projets de retenues avaient été identifiés dans le cadre des protocoles d'accord. Sur le bassin Adour-Garonne, fin 2021 **quatre projets de territoire sont validés (Boutonne, Aume-Couture, Midour et Garonne-Amont) et sept autres sont en élaboration dans les secteurs concernés par un déséquilibre important :** Charente aval et Bruant, Seugne, Seudre, Tescou, Adour amont, Isé et Douze et un projet de territoire est en émergence sur la Séoune (http://www.occitanie.developpement-durable.gouv.fr/les-ptge-dans-le-bassin-adour-garonne-a24658.html). En complément, sur treize autres territoires prioritaires, des démarches concertées pour le maintien ou le retour à l’équilibre ont été engagées ou sont à initier. Sur les autres territoires à enjeux, là où les acteurs sont déjà engagés dans des démarches collectives (SAGE, contrat territorial, contrat de rivière), il sera proposé de renforcer le volet quantitatif permettant d’assurer les équilibres entre besoins et ressources. Des enseignements ont été tirés des situations de crise rencontrées sur les cas de Sivens sur le bassin du Tescou et sur la retenue de Caussade. Le préfet coordonnateur de bassin a conduit une réflexion qui a abouti à la mise en place de premières versions de projet de territoire pour la gestion de l'eau (PTGE) dès lors que des enjeux de retour à l’équilibre quantitatifs étaient identifiés sur un territoire. Le principe de co-construction avec tous les acteurs du territoire a été mis en place notamment sur le bassin du Tescou : partage de l’état des lieux et des enjeux du bassin, co-construction des solutions, questionnements sur le futur modèle agricole
du territoire, etc. Ces principes ont été repris en grande partie dans les deux instructions ministérielles de 2015 puis 2019 pour la mise en œuvre des PTGE.

- La récupération des coûts du soutien d’étiage prévue dans le cadre de procédures de déclaration d’intérêt général a été mise en œuvre sur la Garonne et l’Adour. Le comité de bassin poursuit ses travaux quant au **modèle économique de ce soutien d’étiage**. La finalité est de prioriser les financements publics vers des investissements permettant de disposer de moyens d’action pérennes, et parallèlement de systématiser la tarification de l’eau en vue d’un recouvrement des coûts de fonctionnement des ouvrages auprès des usagers bénéficiaires. Incidemment, cette approche devra amener à une réflexion sur la localisation et la nature de ces usages et sur les acteurs soumis à la tarification.

Principales difficultés rencontrées

La mise en œuvre de la réforme sur les volumes prêlevables comprend des mesures d’accompagnement qui peuvent rencontrer localement des difficultés d’engagement :

- la création de nouvelles réserves peut représenter des délais de mise en œuvre plus importants que prévu au niveau de la constitution des maîtrises d’ouvrage. Par ailleurs, la démarche projet de territoire (cf. ci-dessus) qui vise à co-construire un projet avec l’ensemble des parties prenantes prend nécessairement du temps. L’état des réflexions à ce jour ne permet pas encore d’avoir une vision sur tous les territoires des pistes d’action pour réduire les déficits en eau ;

- la contractualisation des changements culturaux nécessaires (cultures et économies en eau) se heurte également à ces difficultés liées à la compensation du changement de pratiques jugée trop faible, au manque de pérennité des dispositifs proposés et à l’évolution lente des pratiques compte tenu du contexte économique agricole local.

Le cadre de plan d’action adopté en 2017 est basé sur une période passée récente et ne tient pas compte des prévisions liées au changement climatique, ce n’est donc qu’une première étape pour atteindre l’équilibre quantitatif. Il vise à assurer le respect des DOE actuels qui ont été fixés sans mise en perspective de l’évolution de l’hydrologie. La question de la prise en compte du changement climatique est abordée dans le plan d’adaptation au changement climatique.

3.2.6. Restaurer les fonctionnalités des milieux aquatiques

Afin de poursuivre le travail engagé depuis de nombreuses années déjà, le SDAGE 2016-2021 renforce les objectifs de préservation et de gestion durable des milieux aquatiques et humides et de leur biodiversité liée à l’eau ainsi que de réduction de l’impact des aménagements hydrauliques sur ces milieux. La libre circulation des poissons et le transport naturel des sédiments font également partie des enjeux majeurs pointés à l’échelle nationale, au même titre que la réduction des aléas d’inondation.

Pour atteindre les objectifs fixés, le SDAGE consolide certaines règles de gestion particulièrement stratégiques, comme par exemple, la restauration de la continuité écologique et la bonne gestion hydromorphologique des cours d’eau.
Par ailleurs, il propose de nombreux principes de gestion pour améliorer la préservation et la restauration des fonctionnalités des milieux aquatiques et humides et de leur biodiversité qui restent d’actualité. La préservation des zones humides est renforcée, avec un pas important franchi dans le cadrage de la compensation des impacts subis par ces milieux fragiles. Le SDAGE identifie les milieux à forts enjeux environnementaux, pépinières de la biodiversité aquatique du bassin (cours d’eau en très bon état et réservoirs biologiques*), et y associe des règles de gestion pour les préserver.

Logique de mise en œuvre des mesures

Les mesures ont été mises en place sur les masses d’eau superficielles présentant des pressions significatives sur la morphologie et la continuité écologique.

Concernant la morphologie, des actions ont été menées au titre des plans pluriannuels de gestion (PPG) des cours d’eau et sur les masses d’eau littorales. Pour les cours d’eau orphelins de maîtrise d’ouvrage, l’accent a été mis pour en favoriser l’émergence.

Des actions ont été réalisées sur les ouvrages situés sur des cours d’eau classés en liste 2 au titre de l’article L214-17-1-2° du code de l’environnement et pour lesquels des mesures n’avaient pas été engagées dans le PDM 2010-2015.

Les mesures relatives à la réalisation et la mise en œuvre des actions découlant du profil de vulnérabilité ont été proposées pour les masses d’eau concernant les sites de baignade de qualité insuffisante et les zones de production conchylicoles au titre du registre des zones protégées (voir cartes des zones concernées dans le document d’accompagnement n°1 du SDAGE 2016-2021).
Principales avancées

- Des études de connaissance ont été lancées pour connaître l'impact des grands ouvrages hydroélectriques, du recalibrage des cours d'eau ruraux du bassin et des plans d'eau (actualisation de la photographie des densités de plans d'eau – disposition D12 du SDAGE 2016-2021 et méthode pour caractériser le niveau de pression sur l'hydrologie – disposition D13 du SDAGE 2016-2021). Ces études permettent une meilleure connaissance des problématiques, de leur ampleur sur le bassin et des actions à mettre en œuvre pour limiter l'impact sur les milieux naturels ;

- **Dans le domaine de la restauration et l'entretien des cours d'eau**, on observe une augmentation des linéaires gérés (93% du linéaire des cours d'eau de plus de 10 km fin 2020) et parallèlement une rationalisation des structures de gestion des cours d'eau avec une diminution de leur nombre du fait de leur regroupement en lien avec la prise de compétence GEMAPI (132 fin 2020 contre 141 fin 2019). Les interventions physiques sur les cours d'eau représentent plus de 6500 km de berges restaurées entre 2016 et 2020. De nombreux syndicats œuvrent actuellement à la redéfinition de leurs propriétés (ouvrages hydrauliques...) pour leurs usages d'agrément et/ou leur valeur patrimoniale ;

- **Sur la restauration de la continuité écologique**, 477 ouvrages ont été rendus franchissables pour la continuité écologique dont 77% situés sur des cours d'eau classés en liste 2 entre 2016 et 2020. Sur ces 477, 201 ouvrages ont été effacés. De plus, 137 opérations coordonnées concernant 319 ouvrages ont été signées entre 2016 et 2020. L'année 2020 est marquée par l'validation de la priorisation des ouvrages à rendre franchissables dans le cadre de la politique apaisée de restauration de la continuité écologique permettant ainsi de définir une programmation des travaux détaillée entre 2020 et 2027 ;

- **Concernant les zones humides**, en 2020, 16 CATZH (cellules d'assistance technique aux gestionnaires des zones humides) sont actives sur le bassin et 11523 ha de zones humides sont préservés par 2079 gestionnaires adhérents à leurs réseaux techniques. De plus, des aides entre 2016 et 2020 ont permis l'acquisition de 1704 ha de zones humides par différents acteurs. Les plans de gestion en 2020 pour les collectivités ou les associations ont concerné 23048 ha dont 13042 ha en zone littorale. Les inventaires de zones humides bancarisés par le Forum des Marais Atlantiques représentent 53% de la surface du bassin Adour-Garonne fin 2020 avec 265 000 ha recensés (disposition D38 du SDAGE 2016-2021).

Exemple d'action : L'appel à projets, relatif à la « restauration des zones humides de têtes de bassins versants » lancé conjointement par l'agence de l'eau Adour- Garonne, les Régions Nouvelle-Aquitaine, Occitanie / Pyrénées - Méditerranée et Auvergne Rhône-Alpes, a mobilisé 79 candidatures. 42 lauréats ont été retenus pour la réalisation de 15 millions d'euros de travaux sur 4 ans qui concerneront plus de 3 000 ha de zones humides, soit 6 fois plus que les objectifs initiaux. Jusqu'à 30 millions de m$ d'eau seront ainsi stockés et sécurisés. Voir la vidéo https://www.youtube.com/watch?v=JBOORQYq3EA

Principales difficultés rencontrées

Les difficultés d'ordre technique pour la conception et la réalisation des travaux. Les référentiels scientifiques et techniques en matière de travaux de restauration hydromorphologique sont relativement récents. Il existe, par endroits, une insuffisance d'offres de prestation aussi bien en ingénierie qu'en réalisation de travaux.

Les difficultés juridiques liées à l'intervention sur la propriété privée. En effet, le fond des cours d'eau non domaniaux, majoritaires sur le bassin, est la propriété des riverains jusqu'à la moitié du lit mineur* et les ouvrages qui y sont implantés sont pour la plupart des propriétés privées. La multitude de propriétaires concernés rend ainsi le travail de concertation long et complexe.

Le manque d'acceptabilité de la part du public pour les travaux de restauration hydromorphologique et de la continuité écologique. Les riverains sont majoritairement très attachés aux ouvrages en lit mineur (prises d'eau, moulins, vannages et autres ouvrages hydrauliques...) pour leurs usages d'agrément et/ou leur valeur patrimoniale. Les propriétaires riverains de ces ouvrages considèrent que ceux-ci participent également d'une certaine conception paysagère et de l'esthétique de la rivière. Par ailleurs, on leur attribue, souvent à tort, un rôle dans la gestion des crues, dans la gestion de la ressource en eau, voire dans la préservation de la biodiversité.
Malgré les programmes de restauration conduits dans le cadre des deux plans de gestion des poissons migrateurs (PLAGEPOMI)* du bassin, le nombre de poissons amphihalins reste stable depuis plusieurs années. Mais du fait de la diversité des cycles de vies des différentes espèces suivies, les comparaisons annuelles des effectifs ne reflètent pas la santé des différentes espèces amphihalines. Un pas de temps plus long est nécessaire. Sur certains territoires, les compétences de gestion de l’eau et des milieux aquatiques ne sont pas structurées à une échelle hydrographique cohérente ce qui complique la mise en œuvre des travaux de restauration.

3.3. Évolution de l’état des masses d’eau et analyse de l’atteinte des objectifs fixés pour le deuxième cycle

3.3.1. État des masses d’eau superficielles

3.3.1.1. Amélioration de l’état des masses d’eau

Les résultats en matière de qualité des masses d’eau superficielles du bassin sont les suivants :

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivières</td>
<td>43%</td>
<td>51%</td>
<td>97%</td>
<td>97%</td>
</tr>
<tr>
<td>Lacs</td>
<td>22%</td>
<td>35%</td>
<td>92%</td>
<td>95%</td>
</tr>
<tr>
<td>Littorales</td>
<td>55%</td>
<td>48%</td>
<td>65%</td>
<td>93%</td>
</tr>
<tr>
<td>Total</td>
<td>43%</td>
<td>50%</td>
<td>97%</td>
<td>97%</td>
</tr>
</tbody>
</table>

Même si la proportion de masses d’eau mesurées en bon état est en hausse, la proportion de masses d’eau en état médiocre et mauvais est également en hausse. Cela s’explique par l’utilisation d’un nouvel indice pour évaluer les communautés de macro-invertébrés, l’I2M2 : il n’est pas déclassant pour les masses d’eau en bon état (une masse d’eau en bon état avec l’ancien indicateur apparaît toujours en bon état avec l’I2M2) mais il semble plus déclassant pour les masses d’eau présentant des problèmes de qualité. Un grand nombre de masses d’eau en état moyen avec l’ancien indicateur voient ainsi leur qualité abaissée à médiocre ou à mauvais avec l’utilisation de l’I2M2.
L’état chimique des rivières demeure globalement bon (97% de masses d’eau en bon état) alors que 12 substances chimiques supplémentaires ont été prises en compte dans l’évaluation. Les déclassements de l’état chimique sont dus essentiellement à des molécules appartenant aux familles des hydrocarbures et des phytosanitaires.

Concernant les lacs, l’état des lieux 2019 met en avant une progression de l’état écologique (35% contre 22%) et une relative stabilité de l’état chimique (95%), par rapport à l’évaluation de 2015 du SDAGE 2016-2021, alors même que davantage de paramètres sont mesurés. Cette augmentation de la proportion de bon état écologique des lacs provient essentiellement du fait que la plupart des derniers lacs intégrés au réseau de surveillance sont en bon état (106 lacs évalués en 2018 contre 91 en 2015). Une analyse à dire d’expert a par ailleurs permis de considérer en bon état des lacs sur lesquels les dépassements de certains paramètres traduisaient une situation naturelle.

La proportion de masses d’eau littorales (masses d’eau côtières et de transition) en bon état écologique est de 45%, contre 55% en 2015 ; ce taux atteint les 93% pour l’état chimique. Cette légère dégradation de l’état écologique est due à un déclassement de 2 masses d’eau côtières : la masse d’eau d’Arcachon amont pour le paramètre « zostères » et la masse d’eau d’Hossegor pour les paramètres « invertébrés benthiques* intertidaux » et « algues proliférantes ».

3.3.1.2. Évolution de certains éléments de qualité biologique et physico-chimique

L’état écologique est un indicateur intégrateur, qui ne peut devenir bon que lorsque tous les problèmes sont réglés du fait de la règle du paramètre déclassant qui définit une masse d’eau en mauvais état si un seul paramètre est en mauvais état.

Lorsque l’on examine les paramètres séparément, on observe une diminution des concentrations en ammonium et en matières organiques, qui caractérisent les pollutions ponctuelles et qui s’est révélée bénéfique pour les organismes aquatiques avec une amélioration des indicateurs biologiques sur les vingt dernières années. Le nombre de déclassements dus aux paramètres phosphate, demande biologique en oxygène et ammonium s’est considérablement réduit ces dernières années.
3.3.1.3. **Points à souligner concernant cette évaluation de l’état des masses d’eau superficielles**

- La connaissance de l’état de ces masses d’eau s’est fortement améliorée depuis le 1er cycle 2010-2015 et le 2e cycle 2016-2021, principalement par l’augmentation de la surveillance. En 2019, la qualité de l’eau est mesurée pour 47% des masses d’eau rivière contre 40% en 2015. Le développement de nouveaux outils de bio-indication donne aussi une image plus réaliste de l’état des masses d’eau.
- Pour autant, même à niveau de pression constant, une variabilité importante des indices biologiques de l’évaluation de l’état est constatée. En effet, le fonctionnement variable des milieux aquatiques est complexe et n’est pas complètement compris par les outils de mesure. Ce constat de variabilité importante renforce l’idée que l’indicateur de bon état des eaux est à prendre en compte dans le temps long et non comme un indicateur de pilotage des actions.

3.3.1.4. **Analyse de l’atteinte des objectifs du SDAGE 2016-2021**

Le SDAGE 2016-2021 fixe l’objectif d’atteindre :

- le bon état ou le bon potentiel écologique* pour 68% des masses d’eau superficielles à l’échéance 2021 ;
- le bon état chimique pour 99% des masses d’eau superficielles à l’échéance 2021.

On peut noter que :

- 50% des masses d’eau superficielles sont en bon état ou bon potentiel écologique (état des lieux 2019),
- 97% des masses d’eau superficielles sont en bon état chimique (SDAGE 2022-2027).

3.3.2. **État des masses d’eau souterraine**

Pour l’état des lieux 2019, l’évaluation de l’état des masses d’eau souterraine s’est appuyée sur le référentiel actualisé en 2018. Ce nouveau découpage, avec un nombre de masses d’eau accru (144 masses d’eau souterraine contre 105 masses d’eau précédemment), a permis de dissocié ou d’agréger des parties de masses d’eau en fonction de leurs problématiques et/ou propriétés. Il n’est pas possible de faire une comparaison de l’état des masses d’eau souterraine dans la mesure où le référentiel a changé.

Les résultats en matière de qualité des masses d’eau souterraine du bassin sont les suivants :

<table>
<thead>
<tr>
<th>Masses d’eau souterraine</th>
<th>% bon état chimique</th>
<th>% bon état quantitatif*</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDAGE 2016-2021 État 2015</td>
<td>61 %</td>
<td>89%</td>
</tr>
<tr>
<td>État des lieux (EDL) 2019</td>
<td>72 %</td>
<td>87 %</td>
</tr>
</tbody>
</table>

3.3.2.1. **État chimique**

Les données utilisées pour évaluer l’état chimique des eaux souterraines sont extraites des chroniques 2011-2016 et proviennent de l’ensemble des réseaux de surveillance et des données relatives à l’alimentation en eau potable bancharisées dans ADES (accès aux données sur les eaux souterraines), auxquelles s’ajoutent les données de contrôle sanitaire, d’étude et de reconstruées, effectuées sur eaux brutes, fournies par l’ARS.
On constate que 72% de masses d'eau souterraine sont en bon état chimique. Les masses d'eau en mauvais état ou avec des secteurs dégradés représentent plus de 35% de la surface du bassin Adour-Garonne. Les phytosanitaires (et leurs métabolites) et les nitrates demeurent les paramètres principalement responsables de la dégradation des masses d'eau souterraine.

Toutes les masses d'eau majoritairement captives sont en bon état chimique. Néanmoins des problèmes de qualité sont constatés sur les parties libres, ou affleurements pour 15 d'entre elles. Concernant les nappes libres, 65,5% d'entre elles (76 masses d'eau) sont en bon état chimique. Néanmoins, 30 masses d'eau libres en bon état contiennent au moins un secteur dégradé.

3.3.2.2. État quantitatif

La proportion des masses d'eau souterraine en bon état quantitatif atteint 87%.

78% des masses d'eau souterraine majoritairement captives sont en bon état quantitatif. Les secteurs des nappes captives déjà identifiés en déséquilibre quantitatif (estimé au regard des baisses significatives de niveau piézométrique) en 2013 sont toujours en état médiocre. Au total 6 masses d'eau majoritairement captives sont en état quantitatif médiocre.

Concernant les nappes libres, 89% d'entre elles sont en bon état quantitatif. On note que 13 masses d'eau libres, situées dans les sous-bassins de la Charente, de la Seudre et de l'Adour, pour lesquelles les relations nappes-rivières sont très importantes, sont classées en état médiocre. Cet état est estimé au regard des prélèvements en eau souterraine qui sont à l'origine d'une dégradation de l'état écologique des masses d'eau superficielles.

3.3.2.3. Analyse de l’atteinte des objectifs du SDAGE 2016-2021

Le SDAGE 2016-2021 fixe l’objectif d’atteindre :
- le bon état chimique pour 68% des masses d’eau souterraine à l’échéance 2021 ;
- le bon état quantitatif pour 94% des masses d’eau souterraine à l’échéance 2021.

L’état des lieux 2019 met en évidence que :
- 72% des masses d’eau souterraine sont en bon état chimique,
- 87% des masses d’eau souterraine sont en bon état quantitatif.

4. RÉSUMÉ DE L’ÉTAT DES LIEUX

Lors de sa séance du 2 décembre 2019, le Comité de bassin a donné un avis favorable à l’actualisation de l’état des lieux du SDAGE 2022-227 qui lui a été présenté. Cet état des lieux s’est entre autres choses appuyé sur une connaissance améliorée de la qualité des eaux. En effet, depuis 2015, le suivi de la qualité des milieux aquatiques sur le bassin, indispensable à la qualification des masses d’eau a connu des évolutions importantes :
- prise en compte des nouvelles problématiques porteuses d’enjeux à la fois environnementaux et de santé publique (substances dangereuses et émergentes, médicaments,...) ;
- élargissement de la couverture territoriale des réseaux de surveillance : 47% des rivières disposent à présent de données mesurées contre 40% en 2015 ;
- développement du suivi de la réponse du milieu aux pressions importantes du bassin telles que les pollutions diffuses (pesticides*) et les perturbations sur l’hydromorphologie*, ainsi qu’aux actions de prévention et de restauration mises en œuvre dans ces domaines ;
- renforcement du suivi des communautés biologiques (diatomées*, invertébrés, macrophytes*, poissons), la DCE considérant qu’elles sont le meilleur reflet de l’état de santé d’un milieu : 20% de stations en plus disposent de relevés biologiques depuis 2015.

Fin 2020, 50 millions de données sont disponibles sur le portail de bassin au service de la meilleure connaissance de la qualité des milieux.
4.1. Un état des eaux en progression

<table>
<thead>
<tr>
<th>Masses d’eau superficielles</th>
<th>% bon état écologique</th>
<th>% bon état chimique* (sans ubiquistes*)</th>
<th>% bon état quantitatif*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivières</td>
<td>43%</td>
<td>97%</td>
<td>91%</td>
</tr>
<tr>
<td>Lacs</td>
<td>22%</td>
<td>92%</td>
<td>94%</td>
</tr>
<tr>
<td>Littorales</td>
<td>55%</td>
<td>65%</td>
<td>93%</td>
</tr>
<tr>
<td>Total</td>
<td>43%</td>
<td>97%</td>
<td>91%</td>
</tr>
<tr>
<td>Masses d’eau souterraine</td>
<td></td>
<td>61%</td>
<td>89%</td>
</tr>
</tbody>
</table>

L’état écologique des eaux superficielles s’améliore progressivement mais reste inférieur à l’objectif de bon état fixé pour 2021. Cette progression est liée à l’efficacité des actions engagées et à la fiabilisation du modèle d’extrapolation de l’état des cours d’eau. La proportion en hausse des masses d’eau en qualité médiocre et mauvaise s’explique en partie par le nouvel indice utilisé pour évaluer les communautés de macro-invertébrés (I2M2). Ce nouvel indicateur, beaucoup plus sensible à la dégradation de la qualité de l’eau et aux altérations morphologiques conforte la connaissance de l’état et la compréhension du lien pression-impact.

L’état chimique des masses d’eau du bassin est lui majoritairement bon, à l’exception des eaux souterraines pour près de 30% en mauvais état chimique. Les masses d’eau souterraine en mauvais
état ou avec des secteurs dégradés (nitrates et phytosanitaires*) représentent 35% de la surface du bassin Adour-Garonne.

Figure 13 : État chimique des MESU

Figure 14 : État chimique des MESO
L’état quantitatif des masses d’eau souterraine est majoritairement bon avec 89% des nappes libres et 78 % des nappes captives en bon état quantitatif.

Figure 15 : État quantitatif des MESO

4.2. Les pressions s’exerçant sur les masses d’eau

Graphe 2 : Différentes pressions s’exerçant sur les masses d’eau
4.2.1. Une pression domestique qui se réduit mais des équipements à maintenir en bon fonctionnement

Plus de 19% des masses d'eau superficielles subissent une pression significative liée aux rejets des systèmes d'assainissement des collectivités (800 systèmes d’assainissement). Il s’agit bien souvent de systèmes d'assainissement de capacité inférieure à 2 000 équivalent-habitant. Un travail important de connaissance a été réalisé et désormais l’ensemble des masses d’eau en pression significative ont fait l’objet d’un avis partagé entre les experts locaux (SATESE, Agence de l’Eau, DDT et OFB).

![Figure 16 : Pression ponctuelle domestique par temps sec pour les masses d'eau superficielles](image)

4.2.2. Une pression industrielle ciblée

Les rejets d'activités industrielles non raccordées au réseau d'assainissement des collectivités sont à l'origine de pressions significatives sur près de 8% des masses d’eau superficielles. Principalement en région Nouvelle-Aquitaine, ils sont pour moitié d’origine diffuse, en lien avec les rejets des chais du bordelais et des distilleries de la région de Cognac et pour moitié ponctuels à travers les rejets de certains établissements industriels : agroalimentaire, chimie, parachimie, pisciculture, papeterie, etc.
4.2.3. Une pression liée aux nitrates et aux pesticides toujours forte

Globalement, 35% des masses d’eau superficielles et 27% des masses d’eau souterraine libres présentent une pression azote diffus d’origine agricole significative. Les résultats sont cohérents avec les zones vulnérables* (directive nitrates) du bassin Adour-Garonne.

D’autre part, 38% des masses d’eau superficielles et 40% des masses d’eau souterraine libres présentent une pression phytosanitaire significative. Le bassin est particulièrement touché par les pressions diffuses phytosanitaires sur les secteurs de la vallée de la Garonne, les bassins de l’Adour, de la Charente, de la Dordogne et du Tarn ainsi qu’une partie des Landes où se concentrent les grandes cultures (céréales et oléo-protéagineux). Sur ces secteurs géographiques, la forte sensibilité des sols à l’érosion augmente les transferts de molécules phytosanitaires vers les milieux aquatiques. La pression phytosanitaire sur les zones d’affleurements des nappes captives ne justifie généralement
pas un classement de l’ensemble de la nappe en pression significative. Néanmoins, les affleurements, zones de vulnérabilité des nappes captives doivent faire l’objet d’une vigilance particulière.

4.2.4. Des perturbations hydromorphologiques toujours présentes

L’évaluation des altérations de l’hydromorphologie des cours d’eau s’appuie sur des outils et modélisations enrichis par de nombreuses expertises locales qui ont permis une amélioration importante de la connaissance.

Au final, le niveau de pression affiché est globalement plus élevé que pour le cycle précédent mais il constitue une image plus réaliste des pressions qui s’exercent sur le fonctionnement physique des cours d’eau.

38% des masses d’eau cours d’eau et lacs subissent une altération de la morphologie élevée. Ce sont majoritairement des cours d’eau dits ruraux et recalibrés ayant subis des travaux de rectification, de recalibrage* et d’endiguement. Par ailleurs, l’impact des barrages hydroélectriques et des seuils en rivières est notable sur les altérations de l’hydrologie et de la continuité.
4.2.5. Une pression de prélèvement toujours présente

La pression de prélèvements en période d’étiage* est majoritairement liée à l’irrigation avec près de 19% des masses d'eau en pression significative, situées principalement dans les plaines alluviales de la Garonne, de l'Adour, de la Charente et sur le système Neste. Seulement plus de 1% des masses d'eau sont en pression significative en raison de prélèvements pour l'eau potable. À noter que les réalimentations pour compensation des prélèvements, telles que sur le système Neste, ne sont pas prises en compte pour calculer la pression des prélèvements. Les données fournies à ce jour par les Organismes Uniques de Gestion Collective (OUGC) ont permis d’améliorer l’affectation des points de prélèvements irrigation aux masses d’eau. De même, les données attendues sur les prélèvements réels permettront d’affiner les estimations et la gestion.

La pression de prélèvement sur les masses d’eau souterraine met en avant uniquement la significativité des prélèvements au regard de la recharge pluriannuelle. Seul l’état quantitatif évalue à la fois l’équilibre à long terme entre les milieux, et l’absence d’altération (chimique et/ou écologique) des eaux de surface qui serait liée à une baisse d’origine anthropique du niveau piézométrique en étiage. Les prélèvements effectués dans les nappes d’eau souterraine du bassin Adour-Garonne le sont pour moitié par les collectivités pour l’alimentation en eau potable (surtout en nappes...
profondes) et pour moitié par l’agriculture pour l’irrigation (très majoritairement en nappes libres). 11% des masses d’eau souterraine libres et 22% des nappes profondes sont en état quantitatif médiocre. Elles sont majoritairement situées sur les bassins de la Charente (Calcaire du Jurassique et infra-Cénomanien) et Adour (sables fauves et alluvions de l’Adour).

5. EVALUATION DU RISQUE DE NON ATTEINTE DES OBJECTIFS ENVIRONNEMENTAUX

5.1. Le risque de non atteinte du bon état des eaux superficielles et souterraines

Cette mise à jour de l’état des lieux du SDAGE doit permettre d’identifier le Risque de Non Atteinte des Objectifs Environnementaux à l’horizon 2027 (RNAOE 2027).

L’approche retenue pour l’évaluation du risque pour le bassin Adour-Garonne est calée en premier lieu sur l’état de la masse d’eau puis sur les pressions qui s’exercent. Ainsi, le RNAOE 2027 est destiné à identifier les masses d’eau et les pressions significatives sur lesquelles le PDM 2022-2027 devra agir en priorité pour atteindre ou maintenir le bon état. Par ailleurs, le RNAOE 2027 apporte également des éléments permettant, le cas échéant, d’adapter le réseau de contrôles opérationnels et l’ensemble du programme de surveillance.

L’évaluation du RNAOE 2027 est donc une étape préparatoire essentielle à l’élaboration du SDAGE et du programme de mesures 2022-2027.

Cet indicateur ne préjuge pas de ce que sera effectivement l’état des eaux à l’échéance concernée dans la mesure où il s’agit d’une approche en termes de probabilité et par conséquent porteuse de nombreuses incertitudes. Par ailleurs, le RNAOE 2027 ne préjuge pas également des objectifs qui seront affichés dans le plan de gestion 2022-2027. Ces objectifs résulteront des mesures à mettre en œuvre et de leur efficacité supposée pour réduire les effets des pressions importantes à un niveau suffisant.

5.1.1. Eaux superficielles

Pour les masses d’eau superficielles un Risque de Non Atteinte des Objectifs Environnementaux global à l’horizon 2027 (RNAOE 2027) a été défini à partir du RNAOE écologique et du RNAOE chimique. Une masse d’eau est considérée en RNAOE 2027 lorsque qu’elle présente soit un RNAOE écologique soit un RNAOE chimique.
Figure 28: Risque de non-atteinte du bon état global pour les masses d'eau superficielles

À l'échelle du bassin, la caractérisation du risque global (risque le plus déclassant entre le risque écologique et le risque chimique) montre que plus de 63% des masses d'eau superficielles affichent un risque de non atteinte des objectifs à l'horizon 2027.

Figure 29 : Répartition du Risque Global 2027 pour les masses d'eau superficielles

Les masses d'eau « Lacs » et « Rivières » sont les plus impactées avec plus de deux tiers des masses d'eau (respectivement 67 % et 63 %) susceptibles de ne pas atteindre leurs objectifs environnementaux à l’horizon 2027.

Tableau 6 : Risque Global 2027 par type de masse d'eau superficielle

<table>
<thead>
<tr>
<th>Type de masse d'eau superficielle</th>
<th>Pas de risque</th>
<th>Risque 2027</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivières</td>
<td>37 %</td>
<td>983 ME</td>
</tr>
<tr>
<td>Lacs</td>
<td>33 %</td>
<td>35 ME</td>
</tr>
<tr>
<td>Côtières et de transition</td>
<td>43 %</td>
<td>9 ME</td>
</tr>
</tbody>
</table>

D’un point de vue géographique, la commission territoriale Charente se démarque avec la quasi-totalité de ses masses d’eau superficielles (167 masses d’eau soit 94 %) présentant un RNAOE 2027.
De manière plus générale, chaque commission territoriale voit environ deux tiers de ses masses d'eau identifiées en risque de non atteinte des objectifs environnementaux : Tarn Aveyron (72 % des masses d'eau en risque), Garonne (69 %) et Littoral (68 %).

Seule la commission territoriale Lot présente moins de 50 % de ses masses d'eau en RNAOE à l'horizon 2027.

Les pressions à l'origine du risque peuvent être multiples et sont détaillées dans les tableaux ci-dessous.

Tableau 7: Pressions à l'origine du RNAOE

<table>
<thead>
<tr>
<th>Masses d'eau rivières</th>
<th>Risque</th>
<th>Non risque</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pourcentage et nombre de masses d'eau en risque, quelle qu'en soit la cause* :</td>
<td>63%</td>
<td>37%</td>
<td>2680</td>
</tr>
<tr>
<td>Pression domestique</td>
<td>32%</td>
<td>540</td>
<td></td>
</tr>
<tr>
<td>Pression industrielle</td>
<td>13%</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>Pression azote diffus</td>
<td>56%</td>
<td>957</td>
<td></td>
</tr>
<tr>
<td>Pressions prélèvements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigation</td>
<td>31%</td>
<td>521</td>
<td></td>
</tr>
<tr>
<td>Adduction en Eau Potable</td>
<td>2%</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Industrie</td>
<td>0%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Altérations hydromorphologiques</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morphologie</td>
<td>46%</td>
<td>775</td>
<td></td>
</tr>
<tr>
<td>Hydrologie</td>
<td>18%</td>
<td>307</td>
<td></td>
</tr>
<tr>
<td>Continuité</td>
<td>22%</td>
<td>367</td>
<td></td>
</tr>
</tbody>
</table>

* À noter qu'une même masse d'eau peut être classée en risque du fait de plusieurs causes.

<table>
<thead>
<tr>
<th>Masses d'eau Lacs</th>
<th>Risque</th>
<th>Non risque</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pourcentage et nombre de masses d'eau en risque, quelle qu'en soit la cause* :</td>
<td>67%</td>
<td>33%</td>
<td>107</td>
</tr>
<tr>
<td>Pression domestique</td>
<td>3%</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Pression industrielle</td>
<td>1%</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pression azote diffus</td>
<td>31%</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Pression phytosanitaires</td>
<td>6%</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Altérations hydromorphologiques</td>
<td>97%</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

* À noter qu'une même masse d'eau peut être classée en risque du fait de plusieurs causes.
Pourcentage et nombre de masses d’eau en risque, quelle qu’en soit la cause* :

<table>
<thead>
<tr>
<th></th>
<th>Risque</th>
<th>Non risque</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masses d’eau côtières et de transition</td>
<td>57 %</td>
<td>43 %</td>
<td>21</td>
</tr>
<tr>
<td>Pression domestique</td>
<td>25 %</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Pression azote diffus</td>
<td>17 %</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Altérations hydromorphologiques</td>
<td>75 %</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

* À noter qu’une même masse d’eau peut être classée en risque du fait de plusieurs causes.
** À noter que la pression pesticide n’a pas été prise en compte dans le calcul du risque écologique des cours d’eaux.

5.1.2. Eaux souterraines

5.1.2.1. Risque chimique

Une masse d’eau souterraine est dite en risque chimique lorsqu’elle présente soit :

- un état chimique dégradé,
- des secteurs dégradés,
- une pression significative,
- une masse d’eau mère avec une tendance identifiée à la hausse lors de l’état des lieux 2013,
- une expertise ponctuelle hydrogéologique bassin qui l’a déterminée comme tel.

Nappes libres

Figure 31 : Risque de non-atteinte du bon état chimique pour les masses d’eau souterraine libres

Près de 71% des masses d’eau libres présentent un risque de non-atteinte du bon état qualitatif, plus de 29% ne présentant pas de risque.

Figure 32 : Risque de non-atteinte du bon état chimique pour les masses d'eau souterraine captives

Aucune des 28 nappes captives du bassin Adour-Garonne ne présente de risque de non atteinte du bon état chimique.
5.1.2.2. Risque quantitatif

Compte tenu des modalités de fonctionnement et des temps de réponse très disparates entre les masses d'eau libres et captives aucune méthodologie commune ne peut être définie.

Ainsi, pour les masses d'eau captives considérant que :
- le temps de réaction de ces nappes est très long et peut se compter en siècle ;
- que même si les prélèvements sont stoppés, la recharge n'est pas assurée ;
- les recharges de ces masses d'eau sont plus liées aux communications entre nappes qu'à la pluviométrie.

Une masse d'eau captive est dite en risque quantitatif lorsqu'elle présente un mauvais état quantitatif.

La masse d'eau FRFG075B déroge toutefois à cette règle du fait que bien qu'elle soit en bon état quantitatif sans pression prélèvement significative, elle est de plus en plus sollicitée pour l'eau potable (forte évolution de population) et que les autres nappes voisines présentent toutes des problèmes quantitatifs ou qualitatifs.

Pour les masses d'eau libres, il est considéré qu'à conditions similaire (prélèvement stable et répercussions minimes du changement climatique sur ces masses d'eau à une échéance de 6 ans), le risque de dégradation est minime. En conséquence, une masse d'eau libre est dite en risque quantitatif lorsqu'elle présente un mauvais état quantitatif.

Nappes libres

Figure 33 : Risque de non-atteinte du bon état quantitatif pour les masses d'eau souterraine libres

Le risque de non atteinte du bon état quantitatif à l'horizon 2027 concerne 13 masses d'eau libres, soit 11,2 % des nappes de cette catégorie.

À l’inverse, 88,8 % des aquifères libres (103 masses d’eau) ne présentent pas de risque quantitatif.

Les masses d'eau présentant un risque qualitatif sont situées dans les Pyrénées Atlantiques, dans le bassin de l'Adour, en Haute-Gironde et en Charente.
Nappes captives

Figure 34 : Risque de non-atteinte du bon état quantitatif pour les masses d'eau souterraine captives

Le risque quantitatif concerne 7 des 28 nappes profondes du bassin, soit 25 % des masses d'eau en risque.
5.1.2.3. Risque global 2027

De manière générale, 89 masses d'eau souterraine - soit 62 % des aquifères du bassin présentent un risque de non atteinte des objectifs environnementaux à l’horizon 2027.

Les résultats bassin sur le risque global (le plus déclassant des deux risques) sont de 70,7 % des nappes libres et 25 % des nappes profondes présentent un risque de non atteinte des objectifs à l’horizon 2027.
Tableau 8 : Origine du RNAOE

<table>
<thead>
<tr>
<th>Nappes Libres</th>
<th>Risque</th>
<th>Non risque</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pourcentage et nombre de masses d'eau en risque, quelle qu'en soit la cause :</td>
<td>71 %</td>
<td>29 %</td>
<td>116</td>
</tr>
<tr>
<td>Pression azote diffus</td>
<td>46 %</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>Pression phytosanitaires</td>
<td>70 %</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>Pression prélèvement</td>
<td>17 %</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

* À noter qu’une même masse d’eau peut être classée en risque du fait de plusieurs causes.

Tableau 9 : Masses d'eau souterraine en risque global 2027

<table>
<thead>
<tr>
<th>Code de la masse d'eau souterraine</th>
<th>Nom de la masse d'eau souterraine</th>
<th>Surface de la masse d'eau souterraine (km²)</th>
<th>Polluant ou indicateur de pollution caractérisant une masse d'eau souterraine en risque global (une masse d'eau est dite en risque lorsqu'elle présente soit un mauvais état soit une pression significative soit expertise hydrogéologique)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRFG002</td>
<td>Socle des bassins versants du Bandiat, de la Tardoire et de la Bonnieure</td>
<td>624</td>
<td>Mauvais état chimique</td>
</tr>
<tr>
<td>FRFG003</td>
<td>Calcaires du Jurassique moyen des bassins versants de l'Isle et de la Dronne</td>
<td>476</td>
<td>Mauvais état chimique</td>
</tr>
<tr>
<td>FRFG004</td>
<td>Socle des bassins versants de l'Isle et de la Dronne</td>
<td>1511</td>
<td>Mauvais état chimique</td>
</tr>
<tr>
<td>FRFG005A</td>
<td>Socle amont des bassins versants de la Vézère et de la Corrèze</td>
<td>937</td>
<td>Expertise hydrogéologique</td>
</tr>
<tr>
<td>FRFG005B</td>
<td>Socle aval des bassins versants de la Vézère et de la Corrèze</td>
<td>1205</td>
<td>Expertise hydrogéologique</td>
</tr>
<tr>
<td>FRFG006A</td>
<td>Socle aval du bassin versant de la Dordogne</td>
<td>2420</td>
<td>Pression phytosanitaires</td>
</tr>
<tr>
<td>FRFG007A</td>
<td>Socle aval du bassin versant du Lot</td>
<td>2536</td>
<td>Expertise hydrogéologique</td>
</tr>
<tr>
<td>FRFG007B</td>
<td>Socle amont du bassin versant du Lot</td>
<td>2460</td>
<td>Expertise hydrogéologique</td>
</tr>
<tr>
<td>FRFG008</td>
<td>Socle du bassin versant de l'Aveyron</td>
<td>2780</td>
<td>Mauvais état chimique Pression azote diffus</td>
</tr>
<tr>
<td>FRFG009A</td>
<td>Socle du bassin versant du Tarn à l'Est des Grands Causses</td>
<td>660</td>
<td>Expertise hydrogéologique</td>
</tr>
<tr>
<td>FRFG009B</td>
<td>Socle du bassin versant du Tarn à l'Ouest des Grands Causses - partie Nord</td>
<td>1265</td>
<td>Mauvais état chimique Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG009C</td>
<td>Socle du bassin versant du Tarn à l'Ouest des Grands Causses - partie Sud</td>
<td>1724</td>
<td>Mauvais état chimique Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG011</td>
<td>Massif volcanique du Cantal dans le bassin Adour-Garonne</td>
<td>1894</td>
<td>Expertise hydrogéologique</td>
</tr>
<tr>
<td>FRFG013</td>
<td>Calcaires du Jurassique moyen entre Charente et Son-Sonnette</td>
<td>610</td>
<td>Mauvais état chimique et quantitatif Pression azote diffus Pression phytosanitaire</td>
</tr>
<tr>
<td>Code de la masse d'eau souterraine</td>
<td>Nom de la masse d'eau souterraine</td>
<td>Surface de la masse d'eau souterraine (km²)</td>
<td>Polluant ou indicateur de pollution caractérisant une masse d'eau souterraine en risque global (une masse d'eau est dite en risque lorsqu'elle présente soit un mauvais état soit une pression significative soit expertise hydrogéologique)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>FRFG014</td>
<td>Calcaires du Jurassique moyen en rive droite de la Charente amont</td>
<td>647</td>
<td>Mauvais état chimique et quantitatif Pression azote diffus Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG015</td>
<td>Calcaires du Jurassique supérieur du bassin versant de la Boutonne</td>
<td>974</td>
<td>Mauvais état chimique et quantitatif Pression azote diffus Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG016A</td>
<td>Calcaires du Jurassique supérieur du bassin versant de l'Antenne</td>
<td>415</td>
<td>Mauvais état chimique Pression azote diffus Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG016B</td>
<td>Calcaires du Jurassique supérieur du bassin versant de l'Aume-Couture</td>
<td>384</td>
<td>Mauvais état chimique et quantitatif Pression azote diffus Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG016C</td>
<td>Calcaires du Jurassique supérieur du bassin versant de la Charente moyenne</td>
<td>1048</td>
<td>Mauvais état chimique et quantitatif Pression azote diffus Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG017</td>
<td>Alluvions de la Charente</td>
<td>146</td>
<td>Mauvais état chimique Pression azote diffus Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG018</td>
<td>Calcaires du Jurassique moyen et supérieur du karst de la Rochefoucauld - système karstique de la Touvre</td>
<td>646</td>
<td>Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG019</td>
<td>Alluvions de l'Ariège et de l'Hers Vif</td>
<td>474</td>
<td>Mauvais état chimique Pression azote diffus Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG020A</td>
<td>Alluvions de la Garonne moyenne à l'amont de Muret</td>
<td>273</td>
<td>Mauvais état chimique Pression phytosanitaire Pression prélèvement</td>
</tr>
<tr>
<td>FRFG020B</td>
<td>Alluvions de la Garonne moyenne autour de Toulouse</td>
<td>315</td>
<td>Pression azote diffus Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG020C</td>
<td>Alluvions de la Garonne moyenne entre Toulouse et Golfech</td>
<td>415</td>
<td>Mauvais état chimique Pression azote diffus Pression phytosanitaire Pression prélèvement</td>
</tr>
<tr>
<td>FRFG020D</td>
<td>Alluvions de la Garonne moyenne entre Golfech et la confluence du Lot</td>
<td>250</td>
<td>Mauvais état chimique Pression azote diffus Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG021</td>
<td>Alluvions du Tarn, du Dadou, de l'Agout et du Thoré</td>
<td>938</td>
<td>Mauvais état chimique Pression azote diffus Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG022</td>
<td>Alluvions de l'Aveyron</td>
<td>182</td>
<td>Mauvais état chimique Pression azote diffus Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG023B</td>
<td>Alluvions du Lot aval</td>
<td>217</td>
<td>Mauvais état chimique Pression phytosanitaire</td>
</tr>
<tr>
<td>Code de la masse d'eau souterraine</td>
<td>Nom de la masse d'eau souterraine</td>
<td>Surface de la masse d'eau souterraine (km²)</td>
<td>Polluant ou indicateur de pollution caractérisant une masse d'eau souterraine en risque global (une masse d'eau est dite en risque lorsqu'elle présente soit un mauvais état soit une pression significative soit expertise hydrogéologique)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>FRFG024A</td>
<td>Alluvions de la Dordogne moyenne jusqu'à la confluence de la Vézère</td>
<td>169</td>
<td>Pression phytosanitaire Pression prélèvement</td>
</tr>
<tr>
<td>FRFG024B</td>
<td>Alluvions de la Dordogne aval</td>
<td>531</td>
<td>Mauvais état chimique Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG025A</td>
<td>Alluvions de l'Isle</td>
<td>333</td>
<td>Expertise hydrogéologique</td>
</tr>
<tr>
<td>FRFG025B</td>
<td>Alluvions de la Dronne</td>
<td>141</td>
<td>Mauvais état chimique Pression azote diffus Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG028A</td>
<td>Alluvions de l'Adour amont</td>
<td>803</td>
<td>Mauvais état chimique et quantitatif Pression azote diffus Pression phytosanitaire Pression prélèvement</td>
</tr>
<tr>
<td>FRFG030</td>
<td>Alluvions du gave de Pau</td>
<td>273</td>
<td>Mauvais état chimique Pression azote diffus Pression phytosanitaire Pression prélèvement</td>
</tr>
<tr>
<td>FRFG036</td>
<td>Calcaires, dolomies et grès du Lias du bassin versant de l'Aveyron aval</td>
<td>579</td>
<td>Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG037</td>
<td>Calcaires du Jurassique moyen des Causses du Quercy dans le bassin versant de l'Aveyron</td>
<td>433</td>
<td>Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG039</td>
<td>Calcaires du Jurassique moyen des Causses du Quercy dans le bassin versant de la Dordogne moyenne</td>
<td>907</td>
<td>Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG041</td>
<td>Calcaires de l'Oligocène de l'Entre-deux-Mers dans le bassin versant de la Dordogne</td>
<td>383</td>
<td>Expertise hydrogéologique</td>
</tr>
<tr>
<td>FRFG042</td>
<td>Calcaires du Jurassique moyen du bassin versant de la Boutonne</td>
<td>306</td>
<td>Mauvais état chimique et quantitatif Pression azote diffus Pression phytosanitaire Pression prélèvement</td>
</tr>
<tr>
<td>FRFG043A</td>
<td>Molasses du bassin de la Garonne - Terrefort de l'Ariège</td>
<td>978</td>
<td>Pression azote diffus Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG043B</td>
<td>Molasses du bassin de la Garonne - Sud Toulousain</td>
<td>2590</td>
<td>Pression azote diffus</td>
</tr>
<tr>
<td>FRFG043C</td>
<td>Molasses du bassin de la Garonne - Aval</td>
<td>1951</td>
<td>Pression azote diffus Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG043D</td>
<td>Molasses du bassin de la Garonne - Agenais et Gascogne</td>
<td>6873</td>
<td>Mauvais état chimique Pression azote diffus Pression phytosanitaire Pression prélèvement</td>
</tr>
<tr>
<td>FRFG044</td>
<td>Molasses, alluvions anciennes de Piémont et formations peu perméables du bassin de l'Adour</td>
<td>4821</td>
<td>Pression azote diffus Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG045A</td>
<td>Sables, graviers et galets plio-quaternaires de l'Estuaire de la Gironde</td>
<td>957</td>
<td>Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG045B</td>
<td>Sables et graviers plio-quaternaires de la Leyre, cours d'eau côtiers et milieux associés</td>
<td>2269</td>
<td>Mauvais état chimique Pression azote diffus Pression phytosanitaire Pression prélèvement</td>
</tr>
<tr>
<td>FRFG045C</td>
<td>Sables et graviers plio-quaternaires des étangs littoraux Born et Buch</td>
<td>1529</td>
<td>Pression phytosanitaire Pression prélèvement</td>
</tr>
<tr>
<td>Code de la masse d'eau souterraine</td>
<td>Nom de la masse d'eau souterraine</td>
<td>Surface de la masse d'eau souterraine (km²)</td>
<td>Polluant ou indicateur de pollution caractérisant une masse d'eau souterraine en risque global (une masse d'eau est dite en risque lorsqu'elle présente soit un mauvais état soit une pression significative soit expertise hydrogéologique)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------------------------</td>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>FRFG045E</td>
<td>Sables, graviers et galets plio-quaternaires du Sud de la côte sableuse atlantique</td>
<td>1474</td>
<td>Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG046B</td>
<td>Terrasses alluviales de la Midouze aval et de l'Adour moyen</td>
<td>643</td>
<td>Pression azote diffus</td>
</tr>
<tr>
<td>FRFG047B</td>
<td>Sables et graviers plio-quaternaires de la Garonne dans le bassin versant du Ciron</td>
<td>1237</td>
<td>Pression phytosanitaire Pression prélèvement</td>
</tr>
<tr>
<td>FRFG047C</td>
<td>Sables, graviers et galets plio-quaternaires de la Garonne à l'Ouest du Ciron</td>
<td>1011</td>
<td>Mauvais état chimique Pression phytosanitaire Pression prélèvement</td>
</tr>
<tr>
<td>FRFG049A</td>
<td>Terrains plissés du bassin versant de la Garonne - partie Est</td>
<td>1924</td>
<td>Expertise hydrogéologique</td>
</tr>
<tr>
<td>FRFG056</td>
<td>Calcaires et dolomies des Avant-Causses du bassin versant du Tarn</td>
<td>574</td>
<td>Expertise hydrogéologique</td>
</tr>
<tr>
<td>FRFG057</td>
<td>Calcaires des Grands Causses du bassin versant du Tarn</td>
<td>1754</td>
<td>Expertise hydrogéologique</td>
</tr>
<tr>
<td>FRFG058A</td>
<td>Calcaires des Grands Causses et Avant-Causses du bassin versant du Lot - partie Est</td>
<td>541</td>
<td>Expertise hydrogéologique</td>
</tr>
<tr>
<td>FRFG058B</td>
<td>Calcaires des Grands Causses et Avant-Causses du bassin versant du Lot - partie Ouest</td>
<td>293</td>
<td>Pression azote diffus</td>
</tr>
<tr>
<td>FRFG059A</td>
<td>Calcaires des Grands Causses du bassin versant de l'Aveyron</td>
<td>112</td>
<td>Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG062A</td>
<td>Alluvions de la Garonne aval, entre la confluence du Lot et Langon</td>
<td>313</td>
<td>Mauvais état chimique Pression phytosanitaire Pression prélèvement</td>
</tr>
<tr>
<td>FRFG062B</td>
<td>Alluvions de la Garonne aval, entre Langon et la confluence avec la Dordogne</td>
<td>265</td>
<td>Expertise hydrogéologique</td>
</tr>
<tr>
<td>FRFG063</td>
<td>Calcaires, sables et alluvions de l'île d'Oléron</td>
<td>175</td>
<td>Expertise hydrogéologique</td>
</tr>
<tr>
<td>FRFG064</td>
<td>Calcaires du Jurassique supérieur des bassins versants de la Devise et des fleuves côtiers charentais</td>
<td>450</td>
<td>Mauvais état chimique et quantitatif Pression azote diffus Pression phytosanitaire Pression prélèvement</td>
</tr>
<tr>
<td>FRFG066</td>
<td>Sables fauves et calcaires helvétiens libres du bassin versant de l'Adour</td>
<td>1314</td>
<td>Mauvais état chimique et quantitatif Pression azote diffus Pression phytosanitaire Pression prélèvement</td>
</tr>
<tr>
<td>FRFG072</td>
<td>Calcaires et grès du Campano-Maastrichtien majoritairement captif du Nord du Bassin aquitain</td>
<td>12070</td>
<td>Mauvais état quantitatif Pression prélèvement</td>
</tr>
<tr>
<td>FRFG075B</td>
<td>Sables et graviers de l'infra-Cénomanien-Cénomanien captif du Nord du Bassin aquitain</td>
<td>1319</td>
<td>Expertise hydrogéologique</td>
</tr>
<tr>
<td>FRFG076</td>
<td>Calcaires, grès et sables de l'infra-Cénomanien-Cénomanien libre dans les bassins versants de la Charente et de la Seudre</td>
<td>1071</td>
<td>Mauvais état quantitatif Pression azote diffus Pression prélèvement</td>
</tr>
<tr>
<td>FRFG080C</td>
<td>Calcaires du Jurassique moyen et supérieur majoritairement captif au Sud du Lot</td>
<td>16993</td>
<td>Mauvais état quantitatif Pression prélèvement</td>
</tr>
<tr>
<td>Code de la masse d'eau souterraine</td>
<td>Nom de la masse d'eau souterraine</td>
<td>Surface de la masse d'eau souterraine (km²)</td>
<td>Polluant ou indicateur de pollution caractérisant une masse d'eau souterraine en risque global (une masse d'eau est dite en risque lorsqu'elle présente soit un mauvais état soit une pression significative soit expertise hydrogéologique)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>FRFG082C</td>
<td>Sables et grès de l'Éocène inférieur et moyen majoritairement captif du Sud-Ouest du Bassin aquitain</td>
<td>13519</td>
<td>Mauvais état quantitatif Pression prélèvement</td>
</tr>
<tr>
<td>FRFG082D</td>
<td>Sables et argiles à graviers de l'Éocène inférieur et moyen majoritairement captif du Sud-Est du Bassin aquitain</td>
<td>9174</td>
<td>Mauvais état quantitatif Pression prélèvement</td>
</tr>
<tr>
<td>FRFG083A</td>
<td>Calcaires, grès et faluns de l'Oligocène majoritairement captif du Nord du Bassin aquitain</td>
<td>2298</td>
<td>Mauvais état quantitatif Pression prélèvement</td>
</tr>
<tr>
<td>FRFG085</td>
<td>Sables fauves et calcaires helvétiens libres du bassin versant de la Garonne</td>
<td>189</td>
<td>Mauvais état chimique Pression azote diffus Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG086</td>
<td>Alluvions de la Garonne amont, de la Neste et du Salat</td>
<td>174</td>
<td>Mauvais état chimique Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG087</td>
<td>Moyenne terrasse de la Garonne rive gauche entre le piémont pyrénéen et la confluence du Gers</td>
<td>504</td>
<td>Mauvais état chimique Pression azote diffus Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG088</td>
<td>Molasses du bassin du Lot</td>
<td>1004</td>
<td>Pression azote diffus</td>
</tr>
<tr>
<td>FRFG089</td>
<td>Molasses et formations peu perméables du bassin du Tarn</td>
<td>3119</td>
<td>Pression azote diffus Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG090</td>
<td>Molasses et formations peu perméables du bassin de l’Aveyron</td>
<td>811</td>
<td>Pression azote diffus</td>
</tr>
<tr>
<td>FRFG093</td>
<td>Multicouche calcaire du Turonien-Coniacien-Santonien dans les bassins versants de la Charente et de la Seudre</td>
<td>951</td>
<td>Mauvais état chimique et quantitatif Pression azote diffus Pression phytosanitaire Pression prélèvement</td>
</tr>
<tr>
<td>FRFG094</td>
<td>Calcaires, calcaires marneux et grès du sommet du Crétacé supérieur (Santonien supérieur à Maastrichtien) des bassins versants de la Charente, de la Seudre et de la Gironde en rive droite</td>
<td>2532</td>
<td>Mauvais état chimique et quantitatif Pression azote diffus Pression phytosanitaire Pression prélèvement</td>
</tr>
<tr>
<td>FRFG099</td>
<td>Alluvions de la Vézère</td>
<td>51</td>
<td>Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG106</td>
<td>Calcaires marneux et marnes, calcaire bioclastiques et grès du Santonien supérieur au Maastrichtien du bassin versant de la Dronne</td>
<td>1072</td>
<td>Mauvais état chimique et quantitatif Pression azote diffus Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG107</td>
<td>Calcaires, calcaires crayeux, calcaires marneux, grès, sables et marnes du Crétacé supérieur du bassin versant de l'Isle</td>
<td>1260</td>
<td>Mauvais état chimique Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG108</td>
<td>Calcaires, calcaires crayeux, grès, sables et marnes du Cénomanien au Santonien inférieur des bassins versants de la Dordogne moyenne et de la Vézère</td>
<td>1176</td>
<td>Mauvais état chimique Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG109</td>
<td>Calcaires marneux et marnes, calcaire bioclastiques et grès du Santonien supérieur au Maastrichtien des bassins versants de la Dordogne moyenne et de la Vézère</td>
<td>885</td>
<td>Pression phytosanitaire</td>
</tr>
<tr>
<td>FRFG110</td>
<td>Terrains plissés des bassins versants de la Bidouze, de la Nive et du rio Irati</td>
<td>1919</td>
<td>Expertise hydrogéologique</td>
</tr>
</tbody>
</table>
5.2. Le risque de non atteinte des autres objectifs de la Directive-Cadre

L’identification des masses d’eau risquant de ne pas atteindre les objectifs environnementaux en 2027 est à évaluer au regard des objectifs environnementaux de la DCE :

- la non-dégradation des masses d’eau, la prévention et la limitation de l’introduction de polluants dans les eaux souterraines ;
- l’objectif général d’atteinte du bon état des eaux ;
- les objectifs liés aux zones protégées ;
- la réduction progressive ou, selon les cas, la surpression des émissions, rejets et pertes de substances prioritaires, pour les eaux de surface ;
- l’inversion des tendances, pour les eaux souterraines.

Une présentation détaillée a été faite ci-dessus au titre du bon état des eaux. L’évaluation du risque au titre des autres objectifs est envisagée plus globalement comme suit :

Les objectifs de non-dégradation, de prévention et la limitation de l’introduction de polluants pour les eaux souterraines constituent des objectifs « courants » de préservation d’une situation acquise qui renvoie à l’application du programme de mesures (mesures de base et mesures complémentaires) et de la règlementation en vigueur.

Pour les eaux souterraines, il convient de remarquer que, du fait de l’inertie de certains systèmes hydrogéologiques et de la présence résiduelle dans les sols de polluants, les masses d’eau peuvent se dégrader même après que les mesures nécessaires et la réglementation ont été appliquées.

La problématique de la préservation des « zones protégées » relève de la question des mesures permettant d’améliorer la situation de ces zones. Or les mesures (de base et complémentaires) prévues dans les programmes de mesures concourent toutes à l’atteinte du bon état des eaux de surface et des eaux souterraines, Et c’est bien en améliorant, à grande échelle, l’état écologique et chimique des eaux de surface et l’état quantitatif et chimique des eaux souterraines que l’on parviendra le mieux à préserver sur le long terme l’ensemble des zones protégées.
En ce sens, les mesures des programmes de mesures participent pratiquement toutes à la préservation des « zones protégées » listées dans la directive et les objectifs ambitieux définis par la France sont une réponse pour la préservation de ces zones et le respect des textes qui les régissent.

Pour l’analyse du risque, les objectifs liés aux zones protégées sont donc considérés, dans la plupart des cas, comme implicitement traités par la DCE au sein des objectifs environnementaux que sont la non-dégradation et l’atteinte du bon état des eaux.

Pour les eaux souterraines, les objectifs liés à certaines zones protégées sont inclus dans l’évaluation de l’état au titre de l’impact sur les écosystèmes terrestres dépendants et de la production d’eau potable.

Réduction ou suppression progressive des rejets, émissions et pertes de substances prioritaires

L’objectif de réduction progressive voire de suppression des émissions, rejets et pertes des substances prioritaires est traité via l’inventaire des émissions, rejets et pertes des substances dont une première mise à jour est publiée dans ce document.

L’inversion des tendances

6. **INVENTAIRE DES SUBSTANCES DANGEREUSES**

Conformément à l’article 5 de la directive 2008/105/CE (directive fille substances à la DCE), l’inventaire des rejets, pertes et émissions de substances s’attache à dresser un bilan, à l’échelle du bassin, de l’ensemble des émissions pertinentes de substances prioritaires et polluants listés à l’annexe 1 de la directive, partie A, susceptibles d’atteindre les eaux de surface.

En résumé :

![Diagramme des émissions de substances dangereuses](image1)

- **SOURCES D’ÉMISSION DE SUBSTANCES**
 - Cumul sur les 79 substances de l’état écologique et de l’état chimique
 - Pas de prise en compte des spécificités des molécules (solubilité, dangerosité)

![Diagramme des émissions de zinc](image2)

- Avec prise en compte du Zinc : 70% des émissions à travers le ruissellement depuis les surfaces imperméabilisées

- Sans prise en compte du Zinc : 17% des émissions des rejets industriels

- Même zinc qui représente 30% des émissions directes de l’agriculture et dérivés de pulvérisation

Sources :
- Modèle national inventaire (MERN)
- BPRDC (vente physique)
- Mise en oeuvre (ISQOE, BEREP, CIDEA)
6.1. Approche méthodologique globale de réalisation de l’inventaire

Dans la figure ci-après sont représentées différentes voies d’apports de contaminants vers les eaux superficielles. À celles-ci, s’ajoute la remobilisation possible de certains contaminants hydrophobes piégés dans les sédiments des cours d’eau.

Figure 36: Voies d’apports de contaminants vers les eaux superficielles

Dans le cadre de cet état des lieux, l’inventaire présenté est partiel du fait notamment d’un manque de connaissances sur certaines thématiques. Parmi les principales sources d’émission de micropolluants qui doivent être traitées les suivantes ont été prises en compte dans le cadre du présent inventaire :

- le ruissellement depuis les terres perméables,
- les émissions directes de l’agriculture et dérivés de pulvérisation,
- le ruissellement depuis les surfaces imperméabilisées,
- les stations de traitement des eaux usées collectives,
- les émissions industrielles.

Les substances prises en compte dans cette évaluation sont les suivantes :

- 53 substances caractérisant l’état chimique des eaux superficielles (Note technique du 20 octobre 2017 relative à la réalisation de l’inventaire des émissions substances dangereuses) ;
- 13 polluants spécifiques de l’état écologique du bassin Adour-Garonne (PSEE) ;
- 13 polluants spécifiques de l’état écologique des autres bassins de la métropole (qui ne font pas parti de la liste Adour-Garonne).
6.2. Inventaire des rejets, pertes et émissions des substances : résultats globaux

La répartition par source est fournie à titre indicatif car il d’agit d’un cumul sans prendre en compte les spécificités des molécules (solubilité, dangerosité).

La majorité des substances sont émises par le ruissellement depuis les terres imperméabilisées avec 81% du flux total du bassin Adour-Garonne. Ce chiffre est principalement porté par le zinc qui représente à lui seul 70% des émissions à travers cette source. En excluant ce dernier, la part d’émission liée au ruissellement depuis les terres imperméabilisées descend à 53%. Viennent ensuite les émissions liées aux stations d’épuration (un peu plus d’¼ du flux total). L’agriculture (12%) et l’industrie (8%) représentent à elles deux 1/5ème des émissions.

Le tableau ci-dessous reprend les évaluations de flux concernés pour chaque substance et chaque type d’émission.
Tableau 10 : Évaluation des flux par substance toxique par type d’émission (exprimé en kg/an)
6.3. Émissions liées à l’agriculture

Les émissions liées à l’agriculture sont estimées à partir de deux sources :

- l’émission par le ruissellement depuis les terres perméables qui entraîne par lessivage vers les eaux de surface une partie des quantités de substances présentes dans ces sols. Les terres perméables sont considérées assimilables aux terres agricoles ;
- l’émission directe suite à la dérive de pulvérisation des substances appliquées en agriculture. Seules les substances employées dans le domaine agricole en tant que produits phytopharmaceutiques sont traitées à travers les seuls phénomènes de dérive de pulvérisation.

5 substances cumulent près des 3/4 du flux de cette source d’émission : 2 métaux (le zinc et le cuivre) et 3 phytosanitaires (le glyphosate, le pendiméthaline et le chlortoluron). Le glyphosate se démarque particulièrement puisqu’il couvre à lui seul un peu moins de la moitié des flux de substances liés à l’agriculture (47%).

6.4. Ruissellement depuis les surfaces imperméabilisées

Cette estimation concerne les apports urbains par temps de pluie. L’estimation de cette source d’émission est réalisée pour deux scénarios :

- un scénario majorant qui considère que la totalité du flux polluant résultant du ruissellement urbain par temps de pluie est collecté par des réseaux séparatifs et déversé sans traitement ;
- le scénario minorant qui considère qu’une part du volume d’eau de ruissellement est traitée avant rejet.
Sans prise en compte du zinc

Le rejet cumulé des métaux Cuivre, Plomb et Zinc représente plus de 97 % de la totalité du flux polluant de cette source d'émission dont près de 83% pour le zinc. Si l'on exclut celui-ci, des flux importants de DEHP, de Chloroalcanes C10-C13 et de Tétrachloroéthylène sont également observés. À noter que les deux derniers appartiennent au groupe de substances dangereuses prioritaires devant être supprimés d'ici 2021.

6.5. Émissions de stations de traitement des eaux usées collectives

Cette estimation concerne les rejets ponctuels d’agglomérations à l’exutoire des dispositifs de traitement des eaux usées et tient donc compte des émissions industrielles des établissements raccordés sur ces stations. L’estimation repose principalement sur un fonctionnement des ouvrages par temps sec. Seules les STEU avec une capacité > 5000 EH ont été retenues pour le calcul d’émission. À noter que seul le zinc a pu faire l’objet d’une extrapolation pour cette source d’émission.

Les principales familles inventoriées dans ces rejets sont :
- les métaux (zinc, cuivre, nickel, arsenic, chrome, nickel, plomb, cadmium et mercure) qui représentent les 3/4 du flux total des substances émises. Il est important de noter que les flux de rejets des métaux dangereux prioritaires (mercure et cadmium) devant être supprimés d’ici 2021 ont été quantifiés et ne représentent en cumulé que seulement 0,4 % du flux total des métaux sur le bassin ;
• le flux de HAP (Anthracène, Benzo[a]pyrène (benzo[d,e,f]chrysène), Fluoranthène et Naphtalène) représente 25 % du flux total des substances émises. Il est à 99,99 % constitué de Fluoranthène et Naphtalène ;
• les chloroalcanes C10-C13 (paraffines chlorées) qui sont des substances dangereuses prioritaires doivent eux être supprimés d’ici 2021.

D’autres substances dangereuses prioritaires devant être supprimées d’ici 2021 sont également présentes : Nonylphénols, Composés du tributyléthyl, Cadmium et ses composés, Mercure et ses composés, HAP, Tétrachloroéthylène. Le Di(éthylhexyl)phtalate et Trifluraline doivent eux être supprimés d’ici 2033.

6.6. Émissions industrielles

L’estimation des émissions industrielles concerne les rejets directs nets effectués par les activités industrielles du bassin dans les masses d’eau superficielles. Ne sont pas pris en compte ici les rejets industriels effectués dans un système d’assainissement collectif. Deux approches méthodologiques ont été adoptées pour évaluer ces émissions industrielles selon la présence ou non de mesures réelles des effluents.
Les principales familles inventoriées dans ces rejets sont :

- les métaux (zinc, cuivre, nickel, chrome, plomb, arsenic et cadmium) dont le flux représente 83% du flux total des substances émises. Il est important de noter que les métaux dangereux prioritaires, aujourd’hui très réglementés et dont les rejets doivent être supprimés d’ici 2021 (cadmium et mercure), ne représentent au total que seulement 0,8 % du flux total des métaux sur le bassin ;
- les BTEx (benzène, toluène et xylènes) dont le flux représente 13% du flux total des substances émises ;
- les COV (1,2 Dichloroéthane, Dichlorométhane, Tétrachloroéthylène, Tétrachlorure de carbone, Trichloroéthylène, Trichlorométhane (chloroforme)) dont le flux représente 2% du flux total des substances émises. Dans cette famille, 93% du flux est constitué par le trichlorométhane.

On note également la présence de substances dangereuses prioritaires devant être supprimées d’ici 2021 : Chloroalcanes C10-C13, Nonylphénols, Composés du tributylétain, Cadmium et ses composés, Hexachlorobenzène, Mercure et ses composés, HAP, Tétrachloroéthylène, Tétrachlorure de carbone et Trichloroéthylène.

Le Di(éthylhexyl)phtalate quant à lui doit être supprimé d’ici 2033.

![Diagramme des flux de substances émises](image_url)
7. VERSION ABRÉGÉE DU REGISTRE DES ZONES PROTÉGÉES

L'article 6 de la directive 2000/60/CE établissant un cadre pour une politique communautaire dans le domaine de l'eau prévoit que, dans chaque bassin, soit établi un registre des zones protégées.

Le registre regroupe tous les zonages dans lesquels s'appliquent des dispositions relevant d'une législation européenne spécifique, concernant la protection des eaux de surface ou souterraines, ou la conservation des habitats et des espèces directement dépendants de la qualité de l'eau. Le contenu du registre des zones protégées est défini aux articles 6 et 7 et à l'annexe IV de la directive cadre. Par nature, les zones protégées sont :

- soit des aires géographiques particulières ;
- soit des masses d'eaux particulières utilisées pour l'alimentation en eau potable et/ou à réserver dans le futur à l'alimentation en eau potable.

Une zone protégée est en fait soumise à deux types d'objectifs :

- aux objectifs spécifiques définis par la directive qui a prévalu à sa désignation,
- aux objectifs environnementaux définis par la Directive Cadre (bon état des eaux).

La loi n° 2004-338 du 21 avril 2004 portant transposition de la Directive Cadre précise que les reports d'échéance de réalisation des objectifs d'une part et les dérogations relatives aux niveaux d'objectifs d'autre part, sont applicables dans les zones protégées, sous réserve du respect des normes et dispositions spécifiques applicables à ces zones. Autrement dit :

- les reports d'échéance et les dérogations aux objectifs environnementaux de la Directive Cadre sont envisageables, selon les dispositions prévues comme pour n'importe quelle masse d'eau ;
- les reports d'échéance et les dérogations aux objectifs spécifiques des directives existantes correspondant au registre des zones protégées ne sont pas envisageables.

7.1. Registre santé

7.1.1. Masses d'eau utilisées pour le captage d'eau destinées à la consommation humaine

7.1.1.1. Réglementation

De manière générale, la législation impose aux États Membres le respect de normes de qualité minimales pour les eaux destinées à la consommation humaine, au niveau d'un certain nombre de paramètres microbiologiques et chimiques. Elle impose également la mise en place de mesures pour éviter la dégradation de la qualité actuelle et pour assurer un contrôle régulier. La date de mise en conformité des eaux aux normes directivées est la fin de l'année 2003, soit cinq ans après la mise en vigueur de la directive de 1998.

7.1.1.2. Caractérisation et localisation des zones

Seuls les captages délivrant plus de 10 m3/jour ou desservant plus de 50 personnes doivent être considérés. Une distinction des captages a été réalisée en fonction du type de ressource sollicitée : eau superficielle ou eau souterraine.
Sur l'ensemble du bassin, il existe 4 342 points de captage pour l'alimentation en eau potable délivrant un débit moyen par jour de 10 m³/j saisis dans la base SISE-EAUX (2018), dont 93,3 % (4 053) en eau souterraine et 6,7 % (288) en eau superficielle.

7.1.2. Masses d’eau utilisées dans le futur pour le captage d’eau destiné à la consommation humaine

En ce qui concerne les masses d’eau à réserver dans le futur à l’alimentation en eau potable et à l’exception de la directive cadre elle-même, il n’existe pas de réglementation européenne spécifique.

En droit français, seul le code de l’environnement (art. 211-2, 211-3, loi sur l’eau codifiée) prévoit l’adoption par décret en Conseil d’État de règles générales de préservation des ressources. Dans la mesure où cette disposition n’a pas encore été prise, aucune mesure ne s’applique à l’heure actuelle aux masses d’eau à ce titre.

En définitive, seules les ressources en eau identifiées dans le SDAGE (disposition B24 et cartographie) identifient des ressources à préserver pour le futur pour l’alimentation en eau potable et ont une portée juridique au travers du SDAGE lui-même.
Tableau B24 : Liste des nappes captives en zone de sauvegarde

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRFG070</td>
<td>Faluns, grès et calcaires de l'Aquitanien-Burdigalien (Miocène) majoritairement captif de l'Ouest du Bassin aquitain</td>
</tr>
<tr>
<td>FRFG072</td>
<td>Calcaires et grès du Campano-Maastrichtien majoritairement captif du Nord du Bassin aquitain</td>
</tr>
<tr>
<td>FRFG073A</td>
<td>Multicouche calcaire captif du Turonien-Coniacien-Santonien du Nord-Ouest du Bassin aquitain</td>
</tr>
<tr>
<td>FRFG073B</td>
<td>Multicouche calcaire majoritairement captif du Turonien-Coniacien-Santonien du centre du Bassin aquitain</td>
</tr>
<tr>
<td>FRFG075A</td>
<td>Calcaires du Cénomanien majoritairement captif du Nord du Bassin aquitain</td>
</tr>
<tr>
<td>FRFG075B</td>
<td>Sables et graviers de l'infra-Cénomanien-Cénomanien captif du Nord du Bassin aquitain</td>
</tr>
<tr>
<td>FRFG078A</td>
<td>Sables, grès, calcaires et dolomies de l'infra-Toarcien libre et captif du Nord du Bassin aquitain</td>
</tr>
<tr>
<td>FRFG078B</td>
<td>Sables, grès, calcaires et dolomies de l'infra-Toarcien majoritairement captif de l'Est du Bassin aquitain</td>
</tr>
<tr>
<td>FRFG080A</td>
<td>Calcaires du Jurassique moyen et supérieur majoritairement captif du Nord du Bassin aquitain</td>
</tr>
<tr>
<td>FRFG080B</td>
<td>Calcaires du Jurassique moyen et supérieur majoritairement captif entre Dordogne et Lot</td>
</tr>
<tr>
<td>FRFG080C</td>
<td>Calcaires du Jurassique moyen et supérieur majoritairement captif au Sud du Lot</td>
</tr>
<tr>
<td>FRFG081</td>
<td>Calcaires du sommet du Crétacé supérieur majoritairement captif du Sud du Bassin aquitain</td>
</tr>
<tr>
<td>FRFG082A</td>
<td>Calcaires du Paléocène majoritairement captif du Sud du Bassin aquitain</td>
</tr>
<tr>
<td>FRFG082B</td>
<td>Calcaires de l'Eocène moyen et supérieur majoritairement captif du Sud du Bassin aquitain</td>
</tr>
<tr>
<td>FRFG082C</td>
<td>Sables et grès de l'Eocène inférieur et moyen majoritairement captif du Sud-Ouest du Bassin aquitain</td>
</tr>
<tr>
<td>FRFG082D</td>
<td>Sables et argiles à graviers de l'Eocène inférieur et moyen majoritairement captif du Sud-Est du Bassin aquitain</td>
</tr>
<tr>
<td>FRFG083A</td>
<td>Calcaires, grès et faluns de l'Oligocène majoritairement captif du Nord du Bassin aquitain</td>
</tr>
<tr>
<td>FRFG083B</td>
<td>Calcaires, grès et faluns de l'Oligocène majoritairement captif du Sud du Bassin aquitain</td>
</tr>
</tbody>
</table>
7.1.3. Masses d’eau désignées zones de baignade et d’activités de loisirs et de sports nautiques

Les masses d’eaux désignées en tant qu’eaux de plaisance correspondent aux portions de rivières, aux étangs, lacs et parties côtières où sont pratiqués des loisirs nautiques pouvant entraîner un contact fréquent avec l’eau. En plus des eaux de baignade, les eaux de plaisance comprennent aussi les zones de loisirs nautiques.

En France, les sites de baignade font l’objet d’un contrôle sanitaire périodique réalisé par les ARS et sont de ce fait bien identifiés. En revanche, les eaux de plaisance hors baignade ne sont pas encore identifiées. Le Ministère de la Santé a demandé aux différentes ARS de recenser l’ensemble des zones de loisirs nautiques. En conséquence, cette première version du registre ne traite que des eaux de baignade.

7.1.3.1. Réglementation

Zones désignées en tant qu’eaux de baignade

Les eaux de baignade doivent satisfaire à des normes de qualité définies par la directive européenne 2006/7/CE du 15 février 2006 concernant la gestion de la qualité des eaux de baignade, et transcrite en droit français dans le Code de la Santé Publique (articles législatifs L.1332-1 à L.1332-9 et articles réglementaires : D.1332-14 et suivants) ainsi que dans 2 arrêtés définissant notamment la fréquence et les modalités d’exercice du contrôle sanitaire, ainsi que les critères de conformité des sites. Cette nouvelle directive a abrogé la directive précédente 76/160/CEE. Sont considérés comme eaux de baignade « les eaux de surface dans lesquelles un grand nombre de baigneurs est attendu et où la baignade n’est pas interdite ou déconseillée de manière permanente ».

Sites de sports en eau vive

Aujourd’hui, il n’existe pas de textes européens ou nationaux les réglementant.

7.1.3.2. Normes et zones de protection

La qualité des eaux de baignade est évaluée au moyen d’indicateurs microbiologiques (Escherichia coli et entérocoques intestinaux) analysés dans le cadre du contrôle sanitaire organisé par les ARS. Le contrôle sanitaire inclut également une surveillance visuelle destinée à détecter la présence par exemple de résidus goudronneux, de verre, de plastique ou d’autres déchets. Le classement des eaux de baignade distingue 4 classes de qualité : bonne qualité (A) ; Qualité moyenne (B) ; Eau pouvant être momentanément polluée (C) et Eau de mauvaise qualité (D). Les eaux classées en catégorie C ou D ne sont pas conformes à la réglementation européenne.
7.1.3.3. Caractérisation et localisation des zones

Les eaux de baignade ne font pas l’objet de zonage. Aussi le registre des zones protégées comprend la carte des points de contrôle sanitaire des zones de baignade.

Figure 39 : Localisation des zones de baignade en fonction des résultats du suivi 2018

Sur l’ensemble du bassin, il existe 512 points de suivi de la baignade dont 227 (44%) sont situés sur des lacs, 103 (20 %) sur des rivières et 182 (36 %) sur le littoral. Concernant les résultats de suivi du contrôle sanitaire en 2018 (données les plus récentes), 478 sites présentent une qualité d’eau conforme aux normes (93%) et 6 une qualité d’eau non conforme (1%). Les données de contrôles sanitaires ne sont pas disponibles pour 28 sites.

7.2. Zones vulnérables figurant à l’inventaire prévu par le décret du 27 Août 1993 relatif à la protection des eaux contre la pollution par les nitrates d’origine agricole

7.2.1. Réglementation

De manière générale, cette législation impose aux états membres :

- la délimitation de zones polluées, ou susceptibles de l’être, par les nitrates d’origine agricole (le seuil étant fixé à 50 mg/l mais aussi en fonction de la vulnérabilité du milieu et de l’évolution des teneurs). La délimitation des « zones vulnérables » est arrêtée par le préfet coordonnateur de bassin. Ces zones sont réexaminées au moins une fois tous les quatre ans ;
- l’élaboration et la mise en œuvre de plans d’actions visant à réduire ces pollutions.
7.2.2. Sur le bassin Adour-Garonne

7.2.3. Caractérisation et localisation des zones

Figure 40 : Délimitation des zones vulnérables à la pollution par les nitrates

Les zones vulnérables couvrent 46 337 km², soit 39% de la superficie du bassin Adour-Garonne. Elles intersectent tout ou partie du territoire de 3 148 communes.

7.3. Zones sensibles aux pollutions

7.3.1. Réglementation

En application de l’article 6 du décret du 3 juin 1994 relatif à la collecte et au traitement des eaux usées, la législation sur les zones sensibles impose aux États Membres le respect d’échéances de mise en place d’équipements en système de collecte et en dispositifs de traitement, en fonction de la taille des agglomérations. Des échéances et des niveaux de traitement plus contraignants sont définis pour les rejets dans des eaux réceptrices considérées comme sensibles à l’eutrophisation. Elle impose aux états membres d’identifier des zones sensibles sur la base des critères suivants (Annexe II de la directive) :

- les masses d’eaux douces, estuariennes et côtières eutrophes ou pouvant le devenir ;
- les eaux douces de surface destinées à l’alimentation humaine où la teneur en nitrates dépasse 50 mg/l ;
• les zones pour lesquelles un traitement complémentaire est nécessaire pour satisfaire aux autres directives du Conseil (habitat, conchyliculture, eaux de baignade...). Les eaux résiduaires urbaines rejetées dans les zones sensibles et provenant d'agglomérations de plus de 10 000 équivalents habitants (EH) doivent subir un traitement plus rigoureux pour atteindre une épuration plus importante. Les échéances fixées par la directive sont antérieures à 2015 et les objectifs concernent le niveau d'équipement et de traitement et non pas une norme de qualité du milieu récepteur.

7.3.2. Sur le bassin Adour-Garonne

7.3.3. Caractérisation et localisation des zones

Figure 41 : Localisation des zones sensibles

Les zones sensibles couvrent 66 538 km², soit 56 % de la superficie du bassin.

7.4. Registre des zones de protection des habitats et des espèces liées aux sites Natura 2000

7.4.1. Réglementation
Le registre des zones protégées comprend les zones désignées comme zones de protection des habitats et des espèces où le maintien ou l'amélioration de l'état des eaux constitue un facteur important de cette protection, notamment les sites Natura 2000 « pertinents » désignés dans le cadre de la directive 92/43/CEE (directive « habitats ») et de la directive 79/409/CEE (directive « oiseaux »). Les zones de protection spéciales (ZPS), définies par la directive « oiseaux » et les zones spéciales de conservations (ZSC), définies par la directive « habitat », forment le réseau Natura 2000.
À noter que les objectifs des zones Natura 2000 ne sont pas encore nécessairement chiffrés en norme de qualité des eaux. En effet, si la survie des espèces et le maintien des habitats sont l’objectif ultime recherché (mais non daté), ce sont éventuellement les documents d’objectifs de chaque site (DOCOB) qui devraient définir de manière contractuelle le niveau de qualité des eaux minimal nécessaire à l’objectif de survie des espèces ou de maintien des habitats.
7.4.2. Caractérisation et localisation des zones

Les Zones de Protection Spéciales (ZPS) sont au nombre de 30. Elles couvrent une surface totale de 11 607 km², dont 3 437 km² à l’intérieur du bassin (soit 3% de la surface totale environ).

Figure 42 : Localisation des zones de protections spéciales (“directive Oiseaux”)

Les Zones Spéciales de Conservation (ZSC) sont au nombre de 220. Elles couvrent une surface totale de 16 620 km², dont 9 362 km² à l’intérieur du bassin (soit 8% de la surface totale environ).

Figure 43 : Localisation des Zones Spéciales de Conservation (“directive habitats”)

7.5. Zones de production conchylicole ainsi que, dans les eaux intérieures, les zones où s'exercent des activités de pêches d'espèces naturelles autochtones, importantes du point de vue économique

7.5.1. Les zones conchylicoles

7.5.1.1. Normes et zones de protection

En application de la directive européenne 91/492/CEE, la mise sur le marché des mollusques bivalves vivants pour la consommation humaine directe est soumise à diverses conditions concernant, notamment, les zones de production. L'emplacement et les limites des zones de production doivent être fixés par les États membres. Par ailleurs, la directive fixe les normes sanitaires des mollusques bivalves vivants destinés à la consommation humaine immédiate (seuil de salmonelles, coliformes totaux à respecter dans la chair du mollusque et dans le liquide intervalvaire) ainsi que le respect des normes fixées par la directive 79/923/CEE relative à la qualité requise des eaux conchylicoles (Annexe 11-3).

- Zones A : zones dans lesquelles les coquillages peuvent être récoltés pour la consommation humaine directe ;
- Zones B : zones dans lesquelles les coquillages peuvent être récoltés mais ne peuvent être mis sur le marché pour la consommation humaine directe qu’après avoir subi, pendant un temps suffisant, soit un traitement dans un centre de purification, associé ou non à un reparcage, soit un reparcage ;
- Zones C : zones dans lesquelles les coquillages ne peuvent être mis sur le marché pour la consommation humaine directe qu’après un reparcage de longue durée, associé ou non à une purification, ou après une purification intensive mettant en œuvre une technique appropriée ;
- Zones D : zones dans lesquelles les coquillages ne peuvent être récoltés ni pour la consommation humaine directe, ni pour le reparcage, ni pour la purification.

Le zonage est celui du cadastre conchylicole et qui est mis en correspondance avec les points de contrôle sanitaire. Dans chaque département, un arrêté du préfet définit l’emprise géographique des zones conchylicoles et leur classement de salubrité.
7.5.2. Caractérisation et localisation des zones

Les zones de production conchylicole du bassin sont au nombre de 56. Elles sont situées sur trois départements de la façade Atlantique : Charente-Maritime, Gironde et Landes.

Tableau 11: Zones de production conchylicole

<table>
<thead>
<tr>
<th>Dpt</th>
<th>Nb zones</th>
<th>Groupe 2 : bivalves fouisseurs (coques, palourdes...)</th>
<th>Groupe 3 : bivalves non fouisseurs (moules, huîtres...)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nb</td>
<td>A</td>
</tr>
<tr>
<td>17</td>
<td>44</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>33</td>
<td>11</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 44: Localisation des zones conchyliques